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Abstract—Motivated by the urgent demand for the electric
vehicle (EV) fast refueling technologies, battery swapping and
charging stations (BSCSs) are envisioned as a promising solution
to provide timely EV refueling services. However, inappropriate
battery charging operation in BSCSs cannot only incur unnec-
essary high charging cost but also threaten the reliability of the
power grid. In this paper, we aim at obtaining an optimal charg-
ing operation policy for a single BSCS to minimize its charging
cost while ensuring its quality-of-service. Leveraging the novel
queueing network model, we propose to formulate the charging
operation problem as a constrained Markov decision process and
derive the optimal policy by the standard Lagrangian method and
dynamic programming. To avoid the curse of dimensionality in
practical large-scale systems, we further analyze the structure of
the optimal policy and transform the dynamic programming pro-
cedure into an equivalent threshold optimization problem with
a discrete separable convex objective function. Numerical results
validate our theoretical analysis and the computational efficiency
of our proposed algorithms. This paper also shows the impact
of the system parameters (e.g., numbers of batteries and charg-
ers) on the average cost under the optimal charging policy, which
gives rich insights into the infrastructure planning of future BSCS
networks.

Index Terms—Battery swapping and charging station, quality
of service, constrained Markov decision process.

I. INTRODUCTION

ELECTRIFICATION of transportation has been consid-
ered as a promising solution to mitigate the carbon

emission from transportation sector by integrating renew-
able energy and improve the reliability of the power system
by utilizing the energy buffering property of electric vehi-
cles (EVs) [1]. It can be envisioned that EV refueling
systems incorporating various technologies (e.g., slow charg-
ing, fast charging, battery swapping and wireless charging)
will prosper in modern society and serve as the vital joint
nodes of transportation and power systems [2]. However,
EV refueling systems generally face two crucial challenges:
i) as service providers, they need to guarantee a certain
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quality-of-service1 (QoS) for EV customers to maintain their
business profits [3], [4]; ii) as large electricity consumers, they
have to manage their energy consumption profile wisely to
reduce their operational cost from the electricity bills and to
help maintain the power system reliability [5]. To understand
and balance such mutual impact between QoS and operational
cost, analytical models that can capture key features of the EV
refueling systems are desired. In this paper, we focus on one
of the important EV refueling systems, namely, the battery
swapping and charging station (BSCS), and study the trade-off
between the electricity charging cost and the QoS requirement
faced by a single BSCS.

Conceptually a BSCS refuels EVs by swapping their
depleted batteries (DBs) with fully-charged batteries (FBs) in
store, and charges the DBs to FBs locally with proper charg-
ing operation. Agreed with existing works [3]–[6], BSCS is a
triple-win solution compared to other EV refueling systems.
First, EV customers can receive the fastest EV refueling ser-
vice (e.g., 90 seconds for Tesla battery swapping service [7])
under the pay-for-consumption type business model [3] from
BSCSs. Thus, the well-known range anxiety and the high
battery purchasing cost can be reduced in the view of EV
customers. Second, for the power system operators, BSCSs
aggregate the uncertain EV charging demand into a single
charging entity, whose demand is more predictable and can
be reshaped through proper incentive. Therefore, BSCSs are
more than large energy consumers, and they can also be
considered as high-quality grid-level energy storage. In this
regard, the power system reliability can be maintained with
less effort. Third, superior to other EV refueling systems, the
BSCS operators can gain more flexibility from the battery
charging operation. The main reason is that BSCSs are able
to decouple the EV refueling process into battery swapping
procedure and battery charging procedure. Such decoupling
gives the BSCSs full control flexibility of the battery charging
operation provided enough FBs are available. Thus, the BSCSs
can gain profits not just from the payment of EV customers.
They can also participate in the wholesale electricity market
for buying cheaper and greener energy or providing profitable
ancillary services.

Although the concept and technology of BSCSs are already
mature, there are still obstacles to the large-scale commercial-
ization of BSCSs. On one hand, BSCSs need a large stock
of expensive batteries in the infrastructure planning stage and

1QoS refers to the capability of a system to provide better service and can
be defined in various ways. Our QoS metric will be specified explicitly later.

1949-3053 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:bsunaa@ust.hk
mailto:xtanaa@ust.hk
mailto:eetsang@ust.hk
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html


4690 IEEE TRANSACTIONS ON SMART GRID, VOL. 9, NO. 5, SEPTEMBER 2018

take the risk for their performance degradation, which leads
to much higher capital expense compared to the EV charging
stations. On the other hand, due to the lack of standardiza-
tion [5], batteries of different EV brands vary in physical
parameters such as shape, size, and capacity, and may require
dedicatedly-designed chargers. Therefore, batteries from dif-
ferent EV brands are not interchangeable. In order to provide
services for all types of EVs, a BSCS needs to maintain
multiple types of batteries and chargers. Such incompatibility
of batteries raises the capital cost and operational difficulties
significantly. Thus, it is of great importance to understand the
impacts of the numbers of batteries and chargers on the charg-
ing operation of BSCSs before planning the infrastructure of
the BSCSs.

In this paper, we study the optimal charging operation of the
BSCSs and further investigate the impacts of system parame-
ters on BSCSs’ operational cost under the optimized charging
policies. In summary, the contributions are as follows.

• An optimal charging operation framework for a sin-
gle BSCS based on CMDP formulation: We propose
to formulate the charging operation problem as a con-
strained Markov decision process (CMDP) based on the
mixed queueing network model proposed in our prior
works [8], [12]. Lagrangian method and dynamic pro-
gramming are utilized to derive the optimal operation
policy for this CMDP.

• Analyzing the optimal policy structure and designing
corresponding efficient algorithms: To avoid the curse
of dimensionality from the dynamic programming pro-
cedure when solving the CMDP problem, we prove
that the optimal policy has a threshold structure under
mild assumptions. Leveraging this structural property, we
reformulate the dynamic programming procedure as an
equivalent threshold vector minimization problem and
propose a projected subgradient algorithm to search for
the threshold vector efficiently. Our proposed algorithm
can reduce the execution time significantly with a small
loss of optimality.

• Investigating the impacts of the numbers of batteries and
chargers: By applying the optimized policies to BSCSs
with different system parameters, we numerically evaluate
the impacts of the numbers of batteries and chargers on
the operational cost and QoS. Our extensive numerical
results provide rich insights for further optimization in
the infrastructure planning problems on BSCS networks.

II. RELATED WORK

Balancing the operational cost and QoS is the core problem
of the BSCS operation. In the literature, the operational cost
is typically from the electricity bills [4]–[6], [10]–[14] and/or
battery holding cost (e.g., battery degradation cost) [3], [6].
The electricity cost can be connected to the charging opera-
tion through dynamic electricity price. Specially, this dynamic
price may depend on the time [4]–[6], [10]–[11], loca-
tion [4], [9] and/or the instantaneous total charging power of
the BSCSs [12], [13]–[16]. However, how to appropriately
define the QoS metric and quantify its relationship with the

charging operation is a nontrivial but inevitable issue deserving
further exploration.

A. Existing Approaches and Comparisons

Based on different modeling and formulation techniques,
the BSCS charging operation problem mainly falls into two
streams in the literature. The first stream of works are static
problems in forms of integer/mixed-integer deterministic opti-
mization programs and the QoS metric is defined as the
proportion of fulfilled EV swapping requests over the total
requests. Early studies [9], [10] assume the external infor-
mation (e.g., swapping request, electricity price, initial SoC
of DBs) to be known in advance, which is in fact uncertain.
To tackle this uncertainty, [3], [6] transform this stochastic
information into deterministic parameters with a certain con-
fidence level by leveraging the robust optimization technique.
For these works, the probability distributions of the uncertain-
ties are not necessarily required. All the decisions are made
at the beginning of the time horizon, only based on the statis-
tics of the system states. Thus, decisions will not change no
matter how the uncertainties are realized in the following con-
sidered time horizon. In contrast, the second stream of the
literature considers sequential decision-making problems, in
which decisions are based on the observations of the system
state at each decision epoch. Therefore, the solution of this
approach is a mapping from the system state to the charg-
ing operation, which adapts to the instantaneous realization of
the system state. For this stream of works, the QoS metric
is defined to be a certain performance metric of the related
stochastic models (e.g., queueing/inventory model). In partic-
ular, [4] assumes the BSCS has infinite parking spaces for
EV customers to wait for swapping services and considers the
number of backlogged EVs as the QoS metric. On the other
hand, [11], [12] consider a finite size of parking spaces and
waiting EV customers exceeding the size of the parking spaces
are considered to be blocked. Thus, the blocking probability
is adopted as the QoS metric.

In a dynamic environment, the sequential decision-making
formulation can generally achieve better performance in terms
of minimizing the long-term average cost due to its better
utilization of the most recent information compared to the
static problem formulation. However, the sequential decision-
making problems require the probability distributions of the
uncertainties, which may sometimes be unavailable and must
be based on assumptions. Moreover, unlike static problems,
whose solutions can be efficiently computed by leveraging
the mature convex or non-convex optimization techniques,
sequential decision-making problems are typically computa-
tionally difficult and thus hinder practical implementations of
large-scale systems.

B. Our Related Works and Comparisons

Our previous works [8], [22] adopt a queueing approach
to evaluate the performance of the BSCS system with-
out any decision-making process and make contributions to
the BSCS infrastructure planning problem. Complementary
to [8] and [22], our existing work [12] and this paper both aim
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Fig. 1. Queueing network model for an individual BSCS. The EVs form an
open queue and the batteries circulate in a closed queue.

at contributing to the second stream of the charging operation
problem of BSCSs.

However, this paper improves [12] in both formulations
and solution methods. Specifically, [12] formulates the BSCS
charging operation problem as a discrete-time CMDP. The
time horizon is discretized into time intervals with equal length
and all decisions are made at the beginning of each time
interval. This discrete-time model is not able to capture the
state transitions within each time interval because the transi-
tions are assumed to occur at the beginning of time intervals
promptly. In contrast, this paper formulates the charging oper-
ation problem as a continuous-time CMDP, in which decision
is made once a system state transition takes place. Thus, our
formulation in this paper captures the decision-making process
of practical BSCS systems more accurately. In terms of solu-
tion methods, [12] relaxes the CMDP into an unconstrained
MDP by simply adding a weighed blocking probability term
to the objective and eliminate the QoS constraint. Then, the
unconstrained MDP is solved by standard dynamic program-
ming. However, in this paper, we solve the CMDP directly by
Lagrangian method and dynamic programming. Moreover, in
order to reduce the computational complexity of the dynamic
programming procedure, we analyze the optimal policy struc-
ture and design an efficient alternative algorithm to reduce the
execution time significantly with a slight loss of optimality.

III. AN OVERVIEW OF THE BSCS SYSTEM MODEL

We model an individual BSCS as a mixed queueing
network, which consists of an open queue of EVs coupled
with a closed queue of batteries as shown in Fig. 1.

• Open queue of EVs: EVs with battery swapping requests
are the customers of the open queue. When the EV queue
is not full, EV arrivals will either enter a swapping server
(SS), exchange its DB for an FB if available and leave
the system or, wait in the parking spaces when there is
no idle SS. If the EV queue is fully occupied, EV arrivals
will immediately leave for other neighboring BSCSs and
these lost customers are considered to be blocked.

• Closed queue of batteries: FBs and DBs transit into
each other through the SSs or charging servers (CSs).
In particular, DBs are charged to become FBs2 in CSs

2The FBs refer to the batteries that are full enough for swapping and are
not necessarily restricted to be 100% state of charge. The definition of FBs
can affect the average charging time of batteries.

and then enter the FB queue. FBs are swapped by DBs
in SSs and then delivered into the DB queue. Thus, the
total number of DBs and FBs in the BSCS keeps con-
stant and hence a fixed number of batteries circulate in
a closed queue. Due to the limited number of batteries,
both the DB queue and FB queue can be considered to
have infinite buffer sizes.

One key feature of this mixed queueing model is that the
open queue and the closed queue are coupled together. It
can be observed that the EVs (FBs) in the SSs serve as
the servers of the FB (EV) queue. Each battery swapping
operation in SSs will consume one FB, serve one EV and
generate one DB simultaneously. Compared to existing BSCS
models [3]–[6], [9]–[11], this mixed queueing model captures
i) the time for battery swapping operation instead of assum-
ing this operation is finished immediately [3]–[6], [9]–[11];
ii) the finite number of parking lots with EV blocking other
than considering infinite [3]–[6], [9], [10] or zeros parking
spaces [11]; and iii) the impact of limited numbers of batter-
ies and chargers on the charging operation instead of assuming
plenty of chargers (i.e., all DBs are in the chargers) [3], [6],
[10]. These factors are related to the details of charging and
swapping operations. Although such factors may be ignored
in the long-term infrastructure planning stage, they can affect
the real-time operation of BSCSs significantly. Thus, we adopt
this mixed queueing model to study the optimal charging oper-
ation of BSCSs in this paper. Based on this mixed queueing
model, the QoS metric of the BSCS system is defined to be
the blocking probability of EV customers.

IV. CMDP FORMULATION AND OPTIMAL POLICY

In this section, we formulate the charging operation problem
inside a single BSCS as a stochastic control problem given
all the system capacity parameters (i.e., the numbers of
parking spaces or EVs allowed in the system N, swapping
servers/islands S, chargers C, and batteries B). The basic trade-
off lies in that if too many DBs are charged instantaneously,
the charging cost for per unit energy will be raised while
charging too few DBs may lead to the shortage of FBs, which
will result in higher EV blocking probability. Thus, the objec-
tive of this paper is to find the optimal policy determining
how many DBs should be charged concurrently such that the
long-term average charging cost is minimized while the EV
blocking probability does not exceed a certain value. All the
proofs of this paper are presented in the Appendixes B–E.

A. Assumptions

• A1 (System dynamics): We first assume that the EV
arrivals are Poisson with average rate λ, the time for one
swapping operation and the time for charging one bat-
tery from DB to FB are both exponentially distributed
with average rate ν and μ, respectively. This assump-
tion is common for mathematical tractability of queueing
models and has been validated in [8].

• A2 (Homogeneous batteries and chargers): All the bat-
teries and chargers refer to the same standard. Therefore,
only one class of battery (e.g., Tesla battery) is consid-
ered and all the chargers have the same constant charging
rate r0 (e.g., 3.3 kW for level-2 EV charging [2]).
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• A3 (Uninterruptible charging): DBs start charging once
being put into the chargers and will be charged to FBs
without interruptions. This assumption is to avoid the
potential deterioration of batteries [19] and simplify the
implementation of charging operation in practical BSCS
systems in case the smart chargers with control capability
are not available.

B. CMDP Formulation

Based on the queueing network model in Fig. 1, the optimal
charging operation problem is formulated as a CMDP.

1) State Space: The state of the BSCS system is defined
by a 3-tuple s = (n, b, c), where n and b represent the
number of EVs and FBs in the system, respectively, and c
indicates the number of busy chargers. Since the total num-
ber of batteries inside the BSCS keeps constant, the number
of DBs is B − b. Then, the state space is denoted by S =
{s|b + c = 0, 1, . . . , B; n = 0, 1, . . . , N; b = 0, 1, . . . , B; c =
0, 1, . . . , C}. Note that the non-battery load inside the BSCS,
such as lighting, is insignificant compared to the battery-
charging load (i.e., r0c), whereas the total load of a single
BSCS represents only a small portion of the total electricity
load of the power grid. Thus, we consider the charging opera-
tion of the BSCS system is independent of both the non-battery
load inside the BSCS and the base load of the power grid.

2) Action Space: Decision epochs are chosen as the time
instant at which an EV arrives, a battery swapping operation
is finished or a battery charging service is completed. Let u be
the action determining the number of DBs to be put into the
chargers at each decision epoch. Then the action space at state
s is denoted by U(s) = {u|u = 0, 1, . . . , min{C−c, B−b−c}}.
Note that the action is upper bounded by the number of idle
chargers and the number of DBs outside the CSs.

For each state s, its corresponding action is determined by
a certain control policy. A policy θ is called stationary and
randomized if for any decision epoch, θ maps the current state
s to an action u = θ(s) ∈ U(s) with probability P

θ (u|s). Define
the set of stationary randomized policies as �. If θ maps state
s to only one of the actions in U(s), θ is called a stationary
deterministic policy. The set of the stationary deterministic
policies is denoted by �D, and note that �D ⊆ �.

3) Transition Kernel: According to A1, the sojourn time
between the state transition epochs is exponentially dis-
tributed. This implies that our problem is a continuous-time
CMDP, which can be transformed into an equivalent but
easier discrete-time CMDP by uniformization [20]. Let the
uniformization rate equal γ = λ + Cμ + Sν. Then the time
interval of the equivalent discrete-time CMDP is 1/γ . Denote
the transition rate out of state s after taking action u by
γ(s,u) = λ + μ(c + u) + ν min{n, b, S}. Then, we have the
state transition probability as follows:

P
(
s′|s, u

) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λ
γ

s′ = (min{n + 1, N}, b, c + u),
μ(c+u)

γ
s′ = (n, b + 1, c + u − 1),

ν min{n,b,S}
γ

s′ = (n − 1, b − 1, c + u),

1 − γ(s,u)

γ
s′ = (n, b, c + u),

0 otherwise,

where s, s′ ∈ S denote the state before and after the transition.

4) Cost Functions: Electricity charging cost is considered
to be the most important operational cost related to the charg-
ing operation of BSCSs. By taking the same cost model
as [13] and [14], we assume that the charging cost is quadratic
in the total energy consumption of each time interval, which
is equivalent to saying that the charging cost within a time
interval of 1/γ is quadratic in the number of busy chargers
c + u, i.e., fc(s, u) = α0(c + u) + α1(c + u)2. Such charging
cost model is also referred to as an approximation of inclin-
ing block rate [15], which is a convex piece-wise linear cost
function and has been widely used in [12] and [13]–[16] and
in practice [17], [18]. More importantly, it follows the fact
that the marginal price is strictly increasing with the total
demand in the deregulated electricity market. Thus, by using
the quadratic cost model, the peak load of large energy con-
sumers, like a BSCS, can be mitigated. Note that based on the
aforementioned charging cost function fc(s, u), the long-term
average charging cost under policy θ can be defined as

Jθ = lim
K→∞

1

K
E

θ

[∑K−1

k=0
fc(sk, uk)

]
, (1)

where k is the index of uniformized time interval.
In order to facilitate the problem solving process, we rep-

resent the blocking probability in a long-term average manner
as follows:

Lθ = lim
K→∞

1

K
E

θ

[∑K−1

k=0
fl(sk, uk)

]
, (2)

where fl(s, u) = I{n=N} is defined to be the EV blocking cost
function. I{x} is an indicator function which equals to one if x
is true and zero otherwise. Note that the equivalence between
equation (2) and the EV blocking probability is due to the
well-known PASTA property in queueing theory.

Based on the discussion above, the optimal charging oper-
ation problem is formally formulated as

(P1) minθ∈�ε Jθ s.t. Lθ ≤ ε, (3)

where ε is a predetermined QoS requirement threshold and
�ε ⊆ � denotes the set of feasible policies. Policy θ is defined
to be feasible for P1 if it can satisfy the QoS constraint Lθ ≤ ε.
Note that P1 is an average cost CMDP with finite state and
action spaces. Thus, if �ε is not empty, there exists a stationary
randomized optimal policy θ∗, which minimizes Jθ and makes
the QoS constraint binding, i.e., Lθ∗ = ε [21].

To further explore the sufficient condition to ensure a
nonempty �ε, we define a default policy θd(s) = min{C − c,
B − b − c}, under which the BSCS system puts as many bat-
teries into the chargers as possible. Let Jθd and Lθd denote the
average charging cost and EV blocking probability respec-
tively under the default policy. Note that the default policy is
the most aggressive policy to charge DBs and hence its cor-
responding blocking probability is the least, i.e., Lθd ≤ Lθ ,

∀θ ∈ �. Thus, if ε < Lθd , �ε is empty. The complexity of
evaluating Lθd is equivalent to deriving the steady state proba-
bility of the queueing system in Fig. 1. To avoid the trial and
error process to understand the system’s best QoS Lθd , we



SUN et al.: OPTIMAL CHARGING OPERATION OF BSCSs WITH QoS GUARANTEE 4693

turn to studying the lower bound of Lθd , which is analytically
determined by the system capacity parameters (i.e., N, S, C)
and system dynamics (i.e., λ, μ, ν).

Lemma 1 [22]: Given the BSCS system capacity parame-
ters (N, S, C), the lower bound of the EV blocking probability
under the default policy, i.e., L̂θd , is determined in the fol-
lowing two cases as the number of total batteries approaches
infinity:

• Case-I: If C ≤ λ(1 − PEV(N, S))/μ, L̂θd = 1 − Cμ/λ.
PEV(N, S) is the blocking probability of the EV queue
when there are infinite FBs and is determined by

PEV(N, S) = 1

SN−SS!

(
λ

ν

)N

p0,

where p0 = [
∑S

i=0
λi

νii!
+ λS

νSS!

∑N
i=S+1

λi−S

νi−SSi−S ]−1.
• Case-II: If C > λ(1 − PEV(N, S))/μ, L̂θd = PEV(N, S).
The detailed proof and physical interpretation of Lemma 1

are presented in our prior work [22] and Appendix A, respec-
tively. Based on Lemma 1, it can be observed that the lower
bound has two possibilities depending on the number of charg-
ers. According to [22] and Appendix A, the second case is
superior to the first case, and thus should be chosen in the
planning of a BSCS. In the rest of the paper, we only consider
the BSCS systems that satisfy the condition of Case-II.

C. Optimal Policy of P1

In this section, we derive the optimal stationary random-
ized policy for P1 by Lagrangian method and dynamic
programming. Define the Lagrangian of P1 as

Jθ
δ = Jθ + δ

(
Lθ − ε

) = lim
K→∞

1

K
E

θ

[
K−1∑

k=0

f (sk, uk; δ)

]

, (4)

where f (s, u; δ) = fc(s, u)+δ(fl(s, u)−ε) is the total charging
cost per interval and δ ≥ 0 is the Lagrangian multiplier. Note
that f (s, u; δ) = f (s, u) if δ is fixed and f (s, u) = f (n, b, c, u).
Then, we solve P1 by the following procedures.

1) Solving the Lagrangian Unconstrained MDP Problem:
For a given δ, we first consider the following problem:

(P2) minθ∈�D Jθ
δ . (5)

P2 is an unconstrained infinite horizon MDP. Hence an opti-
mal stationary deterministic policy exists for P2 and can be
determined by solving the following Bellman’s optimality
equation

h + V(s) = min
u∈U(s)

[
f (s, u; δ) +

∑

s′∈S P
(
s′|s, u

)
V
(
s′)],

where h is uniquely characterized as the corresponding optimal
average cost and V(s) is the relative value for state s. If we
impose V(s0) = 0 for a fixed s0 ∈ S , V is unique. Based on
the standard dynamic programming technique (e.g., relative
value iteration (RVI) [23]), the optimal relative value V∗ can
be iteratively obtained by

Vi(s) = minu∈U(s)

[
f (s, u; δ) − Vi−1

(
s0
)

+
∑

s′∈S P
(
s′|s, u

)
Vi−1

(
s′)], ∀s ∈ S, (6)

where i is the iteration index. After convergence, V∗ is
achieved and the optimal average cost h∗ = V∗(s0). Let θ∗

δ

denote the optimal policy of P2, then

θ∗
δ (s) = arg minu∈U(s)

[
f (s, u; δ) − h∗

+
∑

s′∈S P
(
s′|s, u

)
V∗(s′)], ∀s ∈ S.

(7)

2) Searching for the Optimal Lagrangian Multipliers:
Denote the optimal Lagrangian multiplier and its correspond-
ing optimal policy of P2 by δ∗ and θ∗

δ∗ , respectively. Based on
the standard results from Lagrangian method in CMDP [21],
δ∗ is determined by

δ∗ = arg maxδ≥0
(
minθ∈�D Jθ

δ

) = arg maxδ≥0 J
θ∗
δ

δ . (8)

Moreover, θ∗
δ∗ is also optimal to P1 if the QoS constraint is

strictly binding under policy θ∗
δ∗ . This means that solving P1

is equivalent to searching for δ∗ and solving its corresponding
P2. If there does not exist such a δ∗, which is a common case
for CMDP, especially for the discrete state and action spaces,
there will exist two optimal Lagrangian multipliers δ− and δ+,
which satisfy i) Lθ∗

δ− > ε; ii) Lθ∗
δ+ < ε; iii) δ+ −δ− ≥ ε,∀ε >

0. Specifically, θ∗
δ− can achieve lower average charging cost

than the optimal policy of P1 but fails to satisfy the QoS
constraint. While for θ∗

δ+ , the QoS constraint is satisfied but
it cannot achieve the minimum average charging cost. Then,
the optimal policy of P1 will be a randomized policy which
selects θ∗

δ+ with probability ρ and θ∗
δ− with probability 1 − ρ.

Specifically, the optimal policy of P1 can be represented as

θ∗ .= ρθ∗
δ+ + (1 − ρ)θ∗

δ− . (9)

In order to search for the optimal Lagrangian multipliers
efficiently, we next show that the Lagrangian multiplier δ

and its corresponding optimal policy θ∗
δ satisfy the following

monotonicity property.
Lemma 2 (Monotonicity Property): The blocking probabil-

ity Lθ∗
δ is non-increasing in δ ∈ (0,∞], and the average

charging cost Jθ∗
δ is non-decreasing in δ ∈ (0,∞].

Based on the monotonicity of Lθ∗
δ in δ, bisection method is

used to search for the optimal Lagrangian multipliers.
3) Obtaining the Probability Mixture Parameter ρ: After

obtaining the optimal Lagrangian multipliers δ+ and δ− and
their corresponding optimal polices θ∗

δ+ and θ∗
δ− by solving

P2, the remaining part is to derive the probability mixture
parameter ρ. Firstly, we can evaluate the blocking probabilities
Lθ∗

δ+ and Lθ∗
δ− under policies θ∗

δ+ and θ∗
δ− by solving the mixed

queueing system. In particular, this Markovian system can be
solved by linear program (LP) as shown in [8]. Then, ρ is
determined by solving the following equation to guarantee the
binding of the QoS constraint, namely,

Lθ∗ = ρLθ∗
δ+ + (1 − ρ)Lθ∗

δ− = ε. (10)

The above procedures to obtain the optimal policy θ∗ are
summarized in Algorithm 1.
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Algorithm 1 Computing the Optimal Policy of P1
Input: State space S , action space U , transition kernel
P(s′|s, u), charging cost function fc(s, u), blocking cost
function fl(s, u) and QoS requirement ε ∈ [Lθd , 1).
Output: Optimal policy θ∗.
Initialize error tolerance ε = 10−5, δ− = 0, δ+ = 104.
While δ+−δ−

2 > ε do
δ = δ++δ−

2 ;
Determine the optimal policy θ∗

δ by solving P2;
Evaluate the blocking probability Lθ∗

δ ;
if Lθ∗

δ = ε then
δ+ = δ− = δ, θ∗

δ+ = θ∗
δ− = θ∗

δ .
else

if Lθ∗
δ < ε then

δ+ = δ, θ∗
δ+ = θ∗

δ .
else

δ− = δ, θ∗
δ− = θ∗

δ .
end if

end if
end while
Determine ρ by solving equation (10).
θ∗ .= ρθ∗

δ+ + (1 − ρ)θ∗
δ− .

V. POLICY STRUCTURE AND EFFICIENT ALGORITHM

In Algorithm 1, the most time-consuming procedure is solv-
ing the unconstrained MDP P2. In practical systems (e.g.,
50-100 chargers and hundreds of batteries), the dynamic pro-
gramming based algorithms (e.g., RVI) are unable to obtain
the optimal policy numerically due to the curse of dimension-
ality. To reduce the computational complexity, we explore the
policy structure of P2, through which an efficient algorithm is
proposed to tackle this computational difficulty.

A. Policy Structure of P2

Definition 1: An order-up-to policy for one dimensional
state x is determined by a single threshold R and has the
form of

θ(x) =
{

R − x if x < R

0 otherwise.
(11)

Theorem 1: The optimal policy of P2 is an order-up-to
policy in c for any fixed (n, b) and can be represented by

θ∗
δ (s) =

{
R∗

(n,b) − c if c < R∗
(n,b)

0 otherwise.
(12)

In particular, the optimal policy parameters R∗
(n,b) are deter-

mined by the following optimization problem

R∗
(n,b) = argmin

0≤c̃≤min{C,B−b}
f (s̃, 0; δ) + Ṽ(s̃), (13)

where s̃ = (n, b, c̃) = (n, b, c + u) is the post-decision state
after taking action u and Ṽ(s̃) = ∑

s′∈S P(s′|s̃, 0)V(s′) denotes
the post-decision value function.

Based on Theorem 1, the optimal charging operation pol-
icy is order-up-to type and determined by some parameters

purely depending on the number of EVs n and the number of
FBs b. Therefore, instead of recording the policy as a map-
ping table (i.e., each state corresponds to a decision), this
order-up-to policy simplifies the representation of the optimal
policy. Better still, it is much easier for practical implementa-
tion. Particularly, at each decision epoch, the optimal decision
maintains the total number of busy chargers c up to be a certain
value R∗

(n,b) for each fixed pair (n, b). This means if c < R∗
(n,b)

holds, we put R∗
(n,b)−c DBs into the chargers. If there are more

than R∗
(n,b) busy chargers, we stop putting DBs into the charg-

ers. This order-up-to policy structure is illustrated in Fig. 2 (a)
in Section VI.

Though the optimal parameters R∗
(n,b) are the solutions of

problem (13), it is non-trivial to solve these optimization
problems because the post-decision value functions have no
closed-form representations. To derive the computationally
efficient algorithm for P2, we first have the following corollary.

Corollary 1 (Action Space Reduction): For an optimal pol-
icy of P2 with policy parameters R∗

(n,b), there exists an
alternative optimal policy whose decision is either 0 or 1. In
particular, the binary optimal policy is described by

θ∗
δ (s) =

{
1 if c < R∗

(n,b)

0 otherwise.
(14)

Corollary 1 has an important computational implication that
the searching space for the optimal policy can be signifi-
cantly reduced especially when the number of chargers is
large. Corollary 1 holds because in the steady state of the
Markov chain induced by the order-up-to policy, only the states
(n, b, R∗

(n,b)), n = 0, 1, . . . , N, and b = 0, 1, . . . , B have posi-
tive stationary probabilities and the other states are transient.
Once the system goes away from these steady states, the result-
ing states are at most one DB away from them. Thus, there
exists an alternative binary policy to ensure that the system
will eventually enter and circulate in these recurrent states as
the order-up-to policy does. Based on Corollary 1, the action
space of P2 is reduced to be {0, 1} for the rest of the paper.

Based on our extensive numerical tests on the optimal poli-
cies of P2 with different system parameters, we observe that
parameters R∗

(n,b) only depend on the value of n−b for almost
all the optimal policies. In order to search for the parameters
R∗

(n,b) efficiently, we make the following assumption.
• A4: Policy parameters R∗

(n,b) purely depend on n − b.
Lemma 3 (Threshold Policy): If A4 holds, the optimal pol-

icy of P2, θ∗
δ (s), is non-decreasing in n−b and is specified by

θ∗
δ (s) = I{n−b>φ∗

c } =
{

1 n − b > φ∗
c

0 n − b ≤ φ∗
c ,

(15)

where φ∗
c is the optimal threshold associated with the number

of busy chargers c.
Note that the threshold policy is based on A4 and is not

guaranteed to be an optimal policy of P2. However, in order
to reduce the computational complexity of P2, we propose
to restrict the searching policies to threshold policies. As
will be shown in Section VI, the average cost by apply-
ing the optimized threshold polices is rather close to that of
the optimal policy (i.e., Fig. 5 (a), Fig. 6 (a) and Fig. 9).
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Algorithm 2 Solving P2 by Projected Subgradient Method
Input: Number of iterations I, constant step size β, system
capacity parameters N, B, S, C, system dynamics λ, μ, ν.
Output: Threshold vector φ∗.
Initialize ψ (0) = 0.
for i = 1 to I do

Determine the subgradient g(ψ (i−1)) by equation (19);
Step size β(i) = β/

∥∥∥g(ψ (i−1))

∥∥∥∞;

ψ (i) = P�

(
ψ (i−1) − β(i)g(ψ (i−1))

)
.

end for
Round ψ (I) to its closest integer point φ∗.

Thus, the threshold policy is at least a good approximation
of the optimal policy and A4 is therefore a mild assump-
tion for practical systems. Define a threshold vector φ =
[φ0, . . . , φC] ∈ � ∩ Z

C+1, where � = {φ ⊆ [ − B, N]C+1| −
B ≤ φ0 ≤ · · · ≤ φC ≤ N}. Based on Lemma 3, deriving the
optimal policy of P2 is equivalent to searching for the optimal
threshold vector φ∗. Note that φ∗ and R∗

(n,b) are both opti-
mal policy parameters, which can specify the optimal policy
uniquely and can be transformed into each other.

B. Discrete Convex Reformulation of P2

Definition 2: A function f : Z
M → R is called discrete

separable convex if f (x) = ∑M
m=1 fm(xm), where fm : Z → R

is convex in xm for all m.
Separable convexity is a desired property for tractable dis-

crete problems. Next, we show that P2 can be transformed
into an equivalent threshold vector optimization problem with
a discrete separable convex objective function. By leveraging
this reformulation, a projected subgradient algorithm is used
to search for φ∗ efficiently.

Theorem 2: If Lemma 3 holds, P2 is equivalent to

minφ∈�∩ZC+1 G(φ) (16)

where the objective function

G(φ) =
∑

s∈S

1

K
E

[
K−1∑

k=0

f (sk, I
{
nk−bk>φck

}; δ)|s0 = s

]

(17)

is discrete separable convex in φ with K → ∞.
Due to the discrete separable convexity, the objective

function (17) defined on discrete sets can be extended to
a continuous convex function G̃(ψ), ψ ∈ �, which has
the same minimum and minimizer as G(φ) [24]. Thus, the
optimal threshold φ∗ can be achieved by applying subgradient-
based algorithms to the extended function G̃(ψ) as shown in
Algorithm 2.

The key step in deriving the subgradient of G̃(ψ) at ψ ∈ �
is shown as follows.

1) Constructing G̃(ψ): Let p = 
ψ� and q = ψ−p, where

x� denotes the largest integer less than x element by element.
Then q = [q1, q2, . . . , qC+1]T ∈ R

C+1 and 0 ≤ qm < 1,
m = 1, . . . , C + 1. Define σ as a permutation of the index of
q such that σ(m) is the index of the m-th largest element in q.

Denote the set of permuted indices by

U0 = ∅, Um = {σ(1), . . . , σ (m)}, m = 1, . . . , C + 1.

Define the characteristic vector of Um, m = 0, 1, . . . , C + 1,
as χUm ∈ {0, 1}C+1, whose j-th entry is 1 if j ∈ Um and
0 otherwise. Then, G̃(ψ) can be constructed as a linear
combination of its surrounding discrete points G(p + χUm),
m = 0, 1, . . . , C + 1. Specifically,

G̃(ψ) = (
1 − qσ(1)

)
G(p) + qσ(C+1)G

(
p + χUC+1

)

+
∑C

m=1

(
qσ(m) − qσ(m+1)

)
G
(
p + χUm

)
. (18)

By this construction, G̃(φ) = G(φ), ∀φ ∈ � ∩ Z
C+1 and

hence G̃(ψ) can be considered as a piecewise linear extension
of G(φ). Furthermore, due to the discrete separable convexity
of G(φ), G̃(ψ) is continuously convex [24], [25].

2) Evaluating G(φ): Based on equation (18), in order to
obtain the subgradient of G̃(ψ) at ψ , we need to evaluate
G(p+χUm) for m = 0, 1, . . . , C +1, namely, the average total
cost given the threshold vector p + χUm . There are generally
two methods to obtain this evaluation. First, we can solve an
LP [8] or utilize the matrix geometric method [22], [26] to
achieve the exact value of G(p + χUm). By using the exact
evaluation, the convergence of the subgradient algorithm is
guaranteed due to the convexity of G̃(ψ). Second, G(p+χUm)

can be estimated by simulation if the computational complex-
ity to achieve the exact value is too large [25], [27]. In this
case, problem (16) can be proved to converge almost surely
under standard conditions [25]. In this paper, we use LP to
obtain the exact value of G(p + χUm). Originally, this LP has
|S| variables and |S| + 1 constraints and its size will increase
dramatically with the increase of the size of the state space.
Fortunately, the size of such an LP can be further reduced.
Particularly, based on the discussion below Corollary 1, only
the states (n, b, R∗

(n,b)) have positive steady state probabilities.
Thus, to evaluate the average total cost under a certain policy,
the state space of the system can be reduced to two dimensions
(n, b). Then, the corresponding LP to evaluate G(p+χUm) only
has NB variables and NB + 1 constraints. In addition, it can
be observed that the size of the LP will not increase with the
number of chargers, which is important for obtaining the opti-
mal policy efficiently for practical systems with large number
of chargers.

3) Deriving the Subgradient g(ψ): Based on the construc-
tion of G̃(ψ) and the evaluation of G(p + χUm), the j-th entry
of the subgradient of G̃(ψ) is determined by

gj(ψ) = G̃
(
p + χUm

)− G̃
(
p + χUm−1

)

= G
(
p + χUm

)− G
(
p + χUm−1

)
, (19)

where j = 1, . . . , C + 1, and m = σ(j).

VI. NUMERICAL RESULTS

In this section, we numerically validate our theoretical
analysis and algorithms presented in previous sections, and
illustrate the impact of the key system parameters (e.g., num-
bers of batteries and chargers) under optimized charging
operations. In our simulations, the fixed system parameters
are shown in Table I and others will be specified later.
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Fig. 2. Illustrating the optimal policy structure of P2. (a) Optimal policy structure with full action space. (b) Optimal policy structure after action space
reduction. (c) States with positive steady state probabilities under optimal policy. The values of the probabilities are shown by the darkness of the symbol.

TABLE I
SYSTEM PARAMETERS

Fig. 3. Convergence performance of average total cost by Algorithm 2.

A. Illustrating the Policy Structure of P2

To illustrate the policy structure of P2, we obtain the optimal
policy by RVI with the number of batteries B = 50, the num-
ber of chargers C = 5, and Lagrangian multiplier δ = 100.
As shown in Fig. 2 (a), different colored symbols represent
the optimal decisions for each state. It is clear that the opti-
mal policy is order-up-to type, namely, for each fixed (n, b),
θ∗(s) = [R∗

(n,b) − c]+. Then, we restrict the action space to
be U(s) = {0, 1},∀s ∈ S , and obtain the optimal policy as
shown in Fig. 2 (b) with the same optimal average charging
cost and blocking probability as Fig. 2 (a). This validates the
statement in Corollary 1. In addition, it can be observed that
for each fixed c, the states with action 0 and 1 are divided
by a straight line which purely depends on n − b as stated
in Lemma 3. Finally, Fig. 2 (c) shows the states with pos-
itive steady state probabilities under the optimal policy. As
discussed under Corollary 1, only the recurrent states (i.e.,
(n, b, R∗

(n,b))) have positive values. Thus, the average charging
cost and blocking probability can be evaluated by solving a
linear system only including these states.

B. Illustrating the Performance of Algorithm 2

1) Convergence of Algorithm 2: We start by discussing the
method to select the step size parameters in Algorithm 2.

Fig. 4. Convergence performance of optimal threshold φ∗ with β = 1.

Since our algorithm is based on the projected subgradi-
ent method, the convergence can be guaranteed by standard
choices of step sizes for deterministic problems [28] or
stochastic problems [25]. The core idea of the selection is
to make sure that the step size is sufficiently small around the
optimal value. However, either diminishing step size or small
constant step size may lead to slow convergence. In our case,
problem (16) is intricately a discrete problem. Therefore, the
optimal solution is separate from its surrounding solutions far
away compared with the continuous case. Thus, we choose
the step size to make sure in each iteration, the solution goes
towards the optimal value with a constant step size β in its
maximum direction. To avoid the potential oscillation around
the optimal solution, Algorithm 2 keeps recording the best
solution in each iteration. After applying Algorithm 2 to solve
P2, Fig. 3 and Fig. 4 illustrate the convergence performance
of the average total cost and the threshold vector, respectively.
Specifically, in Fig. 3, the optimal value can be achieved within
200 iterations by setting the step size β = 1. For the case of
β = 5, it converges faster towards the optimal value, but it will
finally oscillate in a larger region around the optimal value and
the final solution is slightly higher than the optimal value. If
β = 0.2, it converges slowly and will take longer time to reach
the optimal value. In the following simulations, we set β = 1.

2) Accuracy and Computational Complexity of Algorithm 2:
We compare the accuracy and complexity between
Algorithm 2 and the numerical benchmark RVI method.
Accuracy is illustrated by comparing the average total costs
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Fig. 5. Comparing the accuracy and complexity between Algorithm 2 and
RVI with increase of the number of batteries. C = 10.

Fig. 6. Comparing the accuracy and complexity between Algorithm 2 and
RVI with increase of the number of chargers. B = 80.

obtained from the two algorithms while the complexity is
shown by comparing the total execution times. Fig. 5 and
Fig. 6 illustrate the comparison with varying numbers of
batteries and chargers, respectively. With the increase of
the system size, the execution time of the RVI method
grows exponentially and becomes intractable quickly while
Algorithm 2 runs within a reasonable time even for larger
systems. Besides, for the tractable cases, the optimal solutions
obtained from the two algorithms are relatively close to each
other.

3) Impact of Lagrangian Multiplier δ: We illustrate the
impact of the Lagrangian multiplier on the average charging
cost Jθ∗

δ , blocking probability Lθ∗
δ , and Lagrangian polyno-

mial J
θ∗
δ

δ when applying the Lagrangian method. As defined in
equation (4), Lagrangian polynomial is a weighed sum of the
average charging cost and blocking probability. In particular,
the Lagrangian multiplier is the weight of the blocking proba-
bility and transforms the blocking probability into a monetary
value to make it comparable with the average charging cost.
Thus, δ can be interpreted as the marginal cost of blocking
probability. By this interpretation, the Lagrangian polynomial
represents the average total cost (i.e., charging cost plus EV
blocking cost) of the BSCS. In Figs. 7 (a) and (b), the aver-
age charging cost is non-decreasing in δ and the blocking
probability is non-increasing in δ, because the increase of

δ will raise the importance of the EV blocking, and hence
results in more aggressive policies with higher cost to charge
batteries so that the blocking probability can be reduced. In
addition, these two figures verify the monotonicity property
of the Lagrangian multiplier, which is proved theoretically
in Lemma 2. Finally, Fig. 7 (c) shows that the Lagrangian
polynomial is maximized at the optimal Lagrangian multiplier.
For different settings of the QoS requirement ε, the optimal
Lagrangian multiplier is different, in order to guarantee the
QoS requirement. Specifically, stringent QoS requirement (i.e.,
small ε) requires high marginal cost of blocking probability
(i.e., large δ).

C. Illustrating the Optimal Policy of P1

In this section, we investigate the impact of the numbers of
batteries and chargers on the average charging cost by applying
the optimized policies from Algorithm 1. Specially, we solve
P2 by RVI and Algorithm 2, and the resulting policies are
respectively named as optimal policy and Alg 2-based policy.

1) Trade-Off Between Average Charging Cost and Blocking
Probability: Fig. 8 shows how the blocking probability affects
the average charging cost for different numbers of chargers and
batteries. Because the QoS constraint will be strictly binding
under the optimal policy in P1, i.e., Lθ∗ = ε, we increase
the QoS requirement ε gradually and derive its correspond-
ing optimal average charging cost by solving P1. For all the
settings, average charging cost decreases with the increase
of blocking probability. Moreover, increasing the numbers of
chargers and/or batteries can achieve a lower curve in the
figure, which means that the BSCSs with more batteries or
chargers can achieve the same blocking probability with lower
average charging cost. More importantly, compared to batter-
ies, increasing the number of chargers can significantly reduce
the average charging cost. For example, all the three curves
with circle markers have the same number of batteries (i.e.,
B = 80). These curves have large drop on the average charg-
ing cost with the increase of the number of chargers. However,
comparing the curves with circle and triangle markers, we
observe that for the curves with the same number of chargers,
increasing the number of batteries can only slightly reduce the
charging cost if the QoS requirement is stringent (i.e., block-
ing probability is small). Otherwise, the number of batteries
can hardly make any improvement in terms of cost reduction.
In fact, the top two curves, which only have 8 chargers, are
even not able to guarantee very small blocking probability due
to the lack of chargers.

2) Impact of the Numbers of Chargers and Batteries: As
shown in Fig. 9, the average charging cost decreases with the
increase of the numbers of batteries and chargers. Moreover,
the number of chargers has a larger influence on the average
charging cost. This phenomenon indicates that when design-
ing the capacity parameters of BSCSs and taking the future
operational cost into consideration, the system planners need
to pay more attention to the number of chargers instead of the
total number of batteries. In addition, the performance of the
Alg 2-based policy is close to the optimal benchmark. Thus,
for large systems, Alg 2-based policy is a good alternative to
the optimal policy in terms of accuracy and complexity.
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Fig. 7. Illustrating the impact of Lagrangian multiplier on (a) average charging cost; (b) blocking probability; and (c) Lagrangian polynomial (average total
cost). The numbers of chargers and batteries are set to be C = 10 and B = 80.

Fig. 8. Trade-off between average charging cost and blocking probability
under optimal policy.

Fig. 9. Illustrating the average charging cost under the optimal policy and
Alg 2-based policy. The EV blocking probability is guaranteed to be 0.01.
(a) C = 10. (b) B = 80.

D. Identifying the Effects of System Dynamics

The theoretical analysis and proposed algorithms are mainly
based on A1, which assumes that all the dynamics of the BSCS
system are exponentially distributed. Once the distributions in
practice deviate from this assumption, our proposed algorithms
are not necessarily able to guarantee the same performance as
designed. However, in order to investigate how our model will
be affected by the distributions, we apply the policies derived
based on A1 to the systems with different distributions of EV

Fig. 10. Boxplot statistics of the average charging cost evaluated by
Monte Carlo simulation. The optimal policy and Alg 2-based policy perform
better than default policies for all cases. The average charging costs under the
optimized polices are close when only one of the three distributions deviates
from exponential distribution.

Fig. 11. Boxplot statistics of the blocking probability evaluated by
Monte Carlo simulation. Default polices achieve lower blocking probabilities
than the optimal and Alg 2-based polices in all cases. The blocking probabil-
ities under optimized polices are around or below the target QoS requirement
0.01 for all the cases.

arrival, times for battery swapping and charging operations,
and evaluate the average charging cost and blocking probabil-
ity by Monte Carlo simulation. In particular, the distribution
combinations of the five testing cases are shown in Table II.3

3In the table, all cases are in unit of minutes. Expon(x) refers to expo-
nential distribution with average rate x, Constant(x) represents deterministic
distribution of constant x and Uniform(x,y) stands for uniform distribution in
[x, y].
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TABLE II
DISTRIBUTIONS OF SYSTEM DYNAMICS

In the simulation, the numbers of the chargers and batteries
are set to be C = 10 and B = 80, respectively. The blocking
probability requirement is set to be 0.01. For each case, the
simulations are performed for a time horizon of 30 days under
default policy, optimal policy and Alg 2-based policy, respec-
tively, and are repeated 100 times. The simulation results are
shown in Figs. 10 and 11. Case (i) is the benchmark case,
which adopts the distributions consistent with A1. Therefore,
the performance of the optimized polices in this case match
the theoretic results, namely, guaranteeing the blocking prob-
ability to be 0.01 and minimizing the average charging cost.
We maintain the means of different distributions in the follow-
ing cases to be the same as those in case (i). Due to the lack
of historical data for the charging time distribution in exist-
ing BSCSs, we choose to test the uniform distribution (i.e.,
case (ii)), which has been adopted in [6], to make a comparison
with the exponential distribution in case (i). It can be observed
that in case (ii), the blocking probability is lower than the QoS
requirement by sacrificing the charging cost performance. In
practice, the swapping operation may be finished by swap-
ping robots with a constant time. Therefore, the constant-time
swapping operation is tested in case (iii). By comparing cases
(i) and (iii), the average charging cost and blocking probabil-
ity are rather close. For the EV interarrival time distribution,
existing works [4], [11], [12] with sequential decision-making
formulations accept the Poisson arrival assumption. For com-
parison, we choose the uniform distributed interarrival time
in case (iv). Similar to the performance of case (ii), case (iv)
achieves lower blocking probability with higher average charg-
ing cost. This indicates that in both cases, there exists better
policies that can achieve a lower average charging cost and
restrict the blocking probability to be 0.01. Finally, if all
the distributions deviate from A1, the performance degrades
significantly as shown in case (v).

VII. CONCLUSION

In this paper, we have formulated the QoS-guaranteed opti-
mal charging operation problem for BSCSs as a CMDP based
on a novel queueing network model. To tackle the compu-
tational difficulty of solving the CMDP, we have carefully
examined the optimal policy structure and designed a corre-
sponding efficient algorithm. The accuracy and complexity of
our proposed algorithm have been compared with the standard
RVI methods and its superior performance has been validated
by extensive numerical evaluations. Finally, our numerical
results have shown that the number of chargers in the BSCS
has a larger impact in reducing the average charging cost when
the system is operated under QoS-guaranteed optimal policies.

APPENDIX A

INTERPRETATION OF LEMMA 1

Basically, Lemma 1 states that as the number of total batter-
ies approaches infinity, the EV blocking probability will con-
verge asymptoticly to a lower bound L̂θd . Moreover, depending
on the relationship of the maximum battery charging service
rate Cμ and the maximum EV arrival rate λ(1 − PEV(N, S)),
L̂θd appears in two different forms. In Case-I, Cμ is less than
or equal to λ(1 − PEV(N, S)), and hence the battery charg-
ing process is the bottleneck of BSCS’s QoS. Therefore, there
must be a positive probability that FBs are not enough to offer
the battery swapping service, which leads to EVs queueing
up and severe blocking events. In contrast, Case-II represents
the system with plenty of chargers so that Cμ is larger than
λ(1−PEV(N, S)). In this case, L̂θd is determined by the battery
swapping process and is equal to the blocking probability of
the M/M/S/N queueing system (EV queue). This means that
in Case-II, it is with probability 1 that there exist enough FBs
for the battery swapping service. Thus, from the EVs’ point of
view, the BSCS is just an M/M/S/N queue. More importantly,
L̂θd in Case-I is always larger than that in Case-II. This fact
implies that if the system parameters satisfy the conditions
of Case-II, BSCS can achieve a smaller blocking probabil-
ity when B is large enough and hence has more flexibility to
control the battery charging process. Thus, the settings of the
system parameters in Case-II are more appealing in practice
and will be the focus of our paper.

APPENDIX B

PROOF OF LEMMA 2

For any δ > 0 and ξ > 0, we have

J
θ∗
δ

δ+ξ − J
θ∗
δ

δ ≥ J
θ∗
δ+ξ

δ+ξ − J
θ∗
δ

δ ≥ J
θ∗
δ+ξ

δ+ξ − J
θ∗
δ+ξ

δ , (20)

where the two inequalities are due to the optimality of J
θ∗
δ

δ for

P2. Since J
θ∗
δ

δ+ξ − J
θ∗
δ

δ = ξ(Lθ∗
δ − ε), inequality (20) can be

converted to

ξ
(

Lθ∗
δ − ε

)
≥ J

θ∗
δ+ξ

δ+ξ − J
θ∗
δ

δ ≥ ξ
(

Lθ∗
δ+ξ − ε

)
. (21)

Thus, Lθ∗
δ ≥ Lθ∗

δ+ξ , namely, Lθ∗
δ is non-increasing in δ.

Again, due to the optimality of J
θ∗
δ

δ , we have

J
θ∗
δ+ξ

δ − J
θ∗
δ

δ = Jθ∗
δ+ξ + δ

(
Lθ∗

δ+ξ − ε
)

−
[
Jθ∗

δ + δ
(

Lθ∗
δ − ε

)]

= Jθ∗
δ+ξ − Jθ∗

δ + δ
(

Lθ∗
δ+ξ − Lθ∗

δ

)
≥ 0.

Since δ(Lθ∗
δ+ξ − Lθ∗

δ ) ≤ 0, then Jθ∗
δ+ξ ≥ Jθ∗

δ , ∀δ > 0.

APPENDIX C

PROOF OF THEOREM 1

For the convenience of representation, we omit the param-
eter δ in the equations within this proof. For each state s ∈ S
and action u ∈ U(s), we denote its post-decision value function
in iteration i as

Ṽi(s̃) =
∑

s′∈S P
(
s′|s̃, 0

)
Vi−1

(
s′). (22)
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In addition, define an ancillary function

Qi(s, u) = f (s̃, 0) + Ṽi(s̃) = f (s, u) + Ṽi(n, b, c + u), (23)

where f (s̃, 0) = f (s, u) since s̃ = (n, b, c + u). Then, we have

Vi(s) = minu∈U(s) Qi(s, u). (24)

Proposition 1: The following statements hold for each
iteration i: (i) Ṽi(s̃) is convex in c̃; (ii) Qi(s, u) is convex in
(c, u); (iii) Vi(s) is convex in c.

Proof: We first prove (i) of the above proposition by induc-
tion. To show the convexity of Ṽi(s̃) in c̃, we equivalently
prove Ṽi(n, b, c̃ + 1) − Ṽi(n, b, c̃) is non-decreasing in c̃. Due
to V0(s) = 0, ∀s ∈ S , it is clear that Ṽ1(s̃) = 0, ∀s̃ ∈ S . Thus,
Ṽ1(n, b, c̃ + 1) − Ṽ1(n, b, c̃) is non-decreasing in c̃. Assume
Ṽi−1(n, b, c̃ + 1) − Ṽi−1(n, b, c̃) is non-decreasing in c̃. Then
after substituting P(s′|s̃, 0) according to the transition kernel
defined in Section IV-B into equation ( 22) and manipulating
some terms, we have

Ṽi(n, b, c̃ + 1) − Ṽi(n, b, c̃)

= λ

γ

[
Vi−1(min{n + 1, N}, b, c̃ + 1)

− Vi−1(min{n + 1, N}, b, c̃)
]

+ μc̃

γ

[
Vi−1(n, b + 1, c̃) − Vi−1(n, b + 1, c̃ − 1)

]

+ ν min{n, b, S}
γ

[
Vi−1(n − 1, b − 1, c̃ + 1)

− Vi−1(n − 1, b − 1, c̃)
]

+
(

1 − γ(n,b,c̃+1,0)

γ

)[
Vi−1(n, b, c̃ + 1) − Vi−1(n, b, c̃)

]

+ μ

γ

[
Vi−1(n, b + 1, c̃) − Vi−1(n, b, c̃)

]
.

To prove the above equation is non-decreasing in c̃, we need
to show that Vi−1(n, b, c) is convex in c and the last term
Vi−1(n, b + 1, c̃) − Vi−1(n, b, c̃) is non-decreasing in c̃.

Firstly, by the induction hypothesis, Ṽi−1(s̃) is convex in c̃.
Based on equation (23), we can easily verify Qi−1(s, u) is con-
vex in (c, u). Due to the fact that convexity is preserved under
minimization, Vi−1(s) = minu∈U(s) Qi−1(s, u) is convex in c.
Secondly, note that Vi−1(n, b, c̃)− Vi−1(n, b + 1, c̃) represents
the total expected cost with one less FB in initial states. This
cost difference stems from the future EV blocking cost due
to the shortage of FBs. In physical systems, such expected
blocking cost decreases with the increase of busy servers c
because more busy servers means faster FB supply and hence
the blocking cost difference induced by one less FB will be
reduced. This validates that Vi−1(n, b, c̃) − Vi−1(n, b + 1, c̃)
is non-increasing in c̃ and thus the reverse is non-decreasing
in c̃. By summarizing the above two points, Ṽi(n, b, c̃ + 1) −
Ṽi(n, b, c̃) is non-decreasing in c̃.

Finally, (ii) and (iii) can be easily verified based on (i).
After substituting c̃ = c+u and u = c̃−c into equation (24),

the optimal policy can be described as

θ∗(s) =
(

argmin
c≤c̃≤min{C,B−b}

f (n, b, c̃, 0) + Ṽ(n, b, c̃)

)

− c. (25)

Then we show that θ∗(s) can be uniquely determined by the
optimal solution of the following relaxed problem

R∗
(n,b) = argmin

0≤c̃≤min{C,B−b}
f (n, b, c̃, 0) + Ṽ(n, b, c̃). (26)

Based on Proposition 1, f (n, b, c̃, 0)+ Ṽ(n, b, c̃) is convex in c̃
for 0 ≤ c̃ ≤ min{C, B−b}. Then, we can have i) if c ≤ R∗

(n,b) ≤
min{C, B − b}, then the optimal policy is θ∗(s) = R∗

(n,b) − c;
ii) if R∗

(n,b) < c, due to the convexity, f (n, b, c̃, 0) + Ṽ(n, b, c̃)
is non-decreasing in c̃ for c ≤ c̃ ≤ min{C, B − b}, then the
optimal decision is θ∗(s) = c−c = 0. Thus, the optimal policy
of P2 is in the form of order-up-to type policy.

APPENDIX D

PROOF OF LEMMA 3

Define Sd = {(n, b, c)|n−b = d, d = −B, . . . , N} as the set
of states with the same n − b. Based on A4, let Q(d, c, u) =
Q(s, u), ∀s ∈ Sd, where Q(s, u) is defined in equation (23).
Then, in order to prove θ∗(s) is non-decreasing in n − b, we
just need to show Q(d, c, u) is submodular in (d, u), ∀c [23].

Definition 3 (Submodularity): A function f (x, y) is submod-
ular in (x, y) if for x+ ≥ x− and y+ ≥ y−,

f
(
x+, y+)− f

(
x+, y−) ≤ f

(
x−, y+)− f

(
x−, y−). (27)

Referring to the definition of submodularity, we need
to prove Q(d, c, u + 1) − Q(d, c, u) is monotonically non-
increasing in d. In particular,

Q(d, c, u + 1) − Q(d, c, u) = f (n, b, c, u + 1) − f (n, b, c, u)

+ Ṽ(n, b, c + u + 1)

− Ṽ(n, b, c + u). (28)

Since f (n, b, c, u + 1) − f (n, b, c, u) is irrelevant to n − b,
we just need to show Ṽ(n, b, c + u + 1) − Ṽ(n, b, c + u)

is non-increasing in n − b. The proof of this argument is
by induction, whose procedure is similar to the proof of
Proposition 1. The only difference is that we need to show
Vi−1(n, b + 1, c) − Vi−1(n, b, c) is non-decreasing in b. As
discussed in Proposition 1, Vi−1(n, b, c) − Vi−1(n, b + 1, c)
represents the potential blocking cost due to one less FB in
store. Such expected future cost is non-increasing in b because
more FB in stock indicates a smaller future blocking proba-
bility. Then, Vi−1(n, b+1, c)−Vi−1(n, b, c) is non-decreasing
in b and hence Q(d, c, u + 1)− Q(d, c, u) is non-increasing in
d. Thus, Q(d, c, u) is submodular in (d, u).

APPENDIX E

PROOF OF THEOREM 2

It is straightforward that P2 is equivalent to the following
optimization problem

min
θ

∑

s∈S Jθ
δ (s), (29)

where Jθ
δ (s) is defined in equation (4) with initial state s ∈ S .

Based on Lemma 3, problems (16) and (29) are equivalent.
Thus, problem (16) is a reformulation of P2. In order to
prove the discrete convexity of the objective function (17)
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in φ, we first note that G(φ) = ∑
s∈S Q(s, I{n−b>φc}) =

(N + 1)
∑C

c=0
∑N

d=−B Q(d, c, I{d>φc}). In addition, we define
Q̂(c, φc) = ∑N

d=−B Q(d, c, I{d>φc}). Then, we have

Q̂(c, φc + 1) + Q̂(c, φc − 1) − 2Q̂(c, φc)

= [Q(φc − 1, c, 1) − Q(φc − 1, c, 0)]

− [Q(φc, c, 1) − Q(φc, c, 0)] ≥ 0, (30)

where the inequality is due to the submodularity of Q(d, c, u)

in (d, u) shown in the proof of Lemma 3. Thus, Q̂(c, φc) is
convex in φc. In addition, G(φ) = (N + 1)

∑
c Q̂(c, φc). Thus,

G(φ) is discrete separable convex in φ.
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