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Abstract—We present a framework to integrate the choice of
electric vehicle (EV) customers into the vehicle-to-station (V2S)
routing problem for battery swapping. Instead of assigning sta-
tions to each EV customer directly, we provide a recommendation,
including a list of station-price pairs that are available for EV
battery swapping services, for customers to choose. Compared
with assignment, recommendation is closer to reality for scenarios
lacking incentives for the cooperation of customers such as the
battery swapping services of private EVs. In this paper, we model
customers’ behavior by their choice probability given a particular
recommendation, which can be readily obtained based on analytics
techniques once the real data are available. We propose an online
V2S recommendation algorithm, which aims at maximizing the
expected revenue of a group of battery swapping stations (BSSs)
and ensuring the quality service of EV customers. Leveraging the
primal-dual analysis, we show that the loss of revenue due to online
EV arrivals is theoretically bounded by a provable competitive
ratio. Moreover, numerical tests also validate that the proposed
online algorithm can significantly outperform benchmarks in
maximizing revenues in online settings.

Index Terms—battery swapping, online recommendation, choice
model

I. INTRODUCTION

A. Motivation

Transportation electrification, namely the process of integrat-
ing a large fleet of public and private electric vehicles (EVs)
into the transportation system, is conceived to be a promising
midterm solution to reducing the emission of greenhouse gases
and alleviating the demand on fossil fuels. As a key component
of the electrification of transportation, various infrastructures
for supporting EV refueling have been implemented and com-
mercialized all over the world. Specifically, current EV refu-
eling techniques can be mainly categorized into two aspects,
namely, the plug-in charging mode, e.g., [1], [2], and the battery
swapping mode, e.g., [3], [4].

Compared with plug-in charging, which usually takes hours,
battery swapping can be finished within several minutes. EVs
with swappable batteries can swap their depleted batteries
(DBs) for fully-charged batteries (FBs) at battery swapping sta-
tions (BSSs). The DBs can be either charged locally at the BSSs
or gathered to be charged centrally. Currently, without proper
coordination and sufficient information of BSSs, EV customers
with demand for FBs will choose a BSS based on their pref-
erence, which may lead to unpleasant service experience (no
battery) or even traffic congestion. These problems trigger a lot
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of research on vehicle-to-station (V2S) routing problems, where
EVs need to be strategically routed to BSSs. For instance, an
increasing amount of research has been performed on the V2S
assignment problem, where the system operator directly assigns
each EV customer to a refueling station with the purpose of
achieving a certain system-wide performance. However, private
EVs are not committed to a system operator and lack an
incentive to cooperate. Thus, it is more interesting and practical
to design a V2S routing framework by recommendation rather
than assignment. By V2S recommendation, each EV customer
is ensured to have a FB at any recommended BSS, which
attracts EV customers to participate. Furthermore, in this paper,
we consider a more practical situation where EV customers
submit battery swapping requests randomly (both in spatial and
temporal domains) and sequentially. We formulate the V2S
problem as an online V2S recommendation problem, whose
main task is to make real-time recommendations for each
EV customer without knowing any future information. Before
introducing the technical details of our V2S recommendation
problem, in the following we present the related work.

B. Related Work
There is a large amount of research performed on plug-

in charging. For instance, some literature aims to promote
the performance of power grid by leveraging vehicle-to-grid
service (V2G). [5] estimated the frequency regulation capacity
for V2G services by EV charging scheduling. [6] investigated
on decentralized charging control of large populations of EVs
and solved the problem through a Nash equilibrium. There are
also studies on EV refueling station placement. [7] formulated
the EV charging station placement problem and proposed a
detailed case study of Hong Kong. Some other research worked
on optimizing EV charging schedule with the consideration of
time-of-use electricity price in regulated market [8].

Battery swapping requires less refueling time compared
with plug-in charging, which makes battery swapping a good
complementary to plug-in charging. However, since the re-
striction of the same type of battery, battery swapping is
not as commonly implemented as plug-in charging mode. A
relatively small number of literature involves battery swapping.
[9] proposed a mixed queuing network (an open queue of EVs
and a closed queue of batteries) to model a framework of
battery swapping. [10] studied an optimal charging scheduling
problem to minimize the charging cost, in the meanwhile,
satisfy the FB demand for battery swapping.

To solve the V2S routing problem, some work contributes
to solving the problem via V2S assignment. For instance, the
authors of [11] and [12] studied the centralized and distributed
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solutions, respectively, to the optimal scheduling problem for
battery swapping. The solution of [11] and [12] can achieve a
minimal weighted sum of travel distance and electricity gener-
ation cost. [13] designed an online bipartite matching approach
to deal with the battery swapping assignment problem, where
a centralized system operator would assign BSSs to each EV
customer. However no theoretic performance guarantee can be
shown for the proposed online algorithm. [14] formulated a
V2S assignment problem for on-demand mobility system based
on a pricing signal. The authors constructed a bi-level optimiza-
tion problem with the assumption of a potential distribution
of customers’ choice. However, from a more practical point
of view, we take into account customers’ choice model and
formulate a V2S recommendation problem in this paper.

Different from the aforementioned assignment-based V2S
routing, [15] presented an efficient charging scheduling algo-
rithm to recommend charging stations to EV customers, in
order to minimize customers’ traveling time. [16] provided
a real-time charging station recommendation system for EV
taxis based on their historical charging data to minimize the
total waiting time at charging stations. These research are well
performed on plug-in charging mode, where the waiting time as
a key component is carefully considered. However, in our paper,
we focus on V2S recommendation for battery swapping, where
the number of FBs takes an important role, which differentiates
our work from the above literature.
C. Our Contribution

Motivated by the above problems, this paper studies an
online V2S recommendation problem based on estimated pa-
rameters from data analytics without any future information
and makes the following contributions. First, we formulate
and solve the V2S problem taking into account customers’
behavior by recommending BSSs to EVs, which is a more
practical setting compared with V2S assignment. Second, we
design an online primal-dual algorithm, which guarantees a
theoretical performance bound. Third, we present a detailed
case study based on the Hong Kong map to validate our
theoretical analysis.

II. V2S RECOMMENDATION FRAMEWORK

We consider the V2S recommendation problem for BSSs
geographically distributed in different locations of one area. Let
M := {1, . . . ,M} denote the set of BSSs. At the beginning
of the service time horizon (e.g., one day), each station m
has a total number of km FBs in store for battery-swapping
services. These initial FBs can be obtained by either overnight
local charging in BSSs or delivery from a remote charging
facility, where collected DBs from all BSSs are charged to
FBs centrally for dispatching to different BSSs. We consider
the scenario that FBs only come to BSSs at the beginning of
the service time horizon, namely, no replenishment. Each BSS
can offer battery swapping service with different prices. Let
Rm := {r1m, . . . , rJmm } be the possible price levels of BSS
m and Jm := {1, . . . , Jm} be the index set of price levels.
Without loss of generality, prices are ranked from low to high
with the increase of index. Within this area, a population of

Fig. 1: Illustration of the work flow for the V2SRS.

EV customers are able to adopt battery swapping as their
refueling methods complementary to plug-in charging. Let
N := {1, . . . , N} denote the set of EVs, which are indexed
based on their arrival sequence.

A V2S recommendation system (V2SRS) is capable of
communicating with EV customers, and serves as the proxy
of all BSSs aiming to maximize the total revenues of all BSSs.
As illustrated in Fig. 1, interactions between V2SRS and each
EV customer are as follows: 1) EV customer n submits a
request for battery swapping. Upon receiving the customer
information (e.g., time, location and customer ID) associated
with the request, the customer’s choice probability pjn,m(S) can
be estimated based on data analytics, which will be explained in
details in next Sec. II-A. (2) combining this choice probability
and the current system state (i.e., the inventory of FBs at all
stations), the V2SRS recommends a feasible subset S ⊆ A
of (station, price) combinations with a probability xn(S) to
the customer n, in order to maximize the potential revenue
from customer n. Here, we denote the set of all possible
combinations by A := {(m, j)|m ∈ M, j ∈ Jm}. (3) after
receiving the recommendation S from V2SRS, the customer
n accepts one of combinations (m, j) ∈ S with a probability
pjn,m(S). If the customer n accepts the combination (m, j),
then the inventory of FBs of station m decreases by 1, and the
system earns a revenue rjm. Otherwise, the customer n rejects
all recommendations and chooses alternative refueling methods.

A. Customer Choice Model

We model the option selection of EV customer n by
pjn,m(S), quantifying the probability that EV n chooses station
m with price rjm given the recommendation S. This conditional
probability depends on the EV customer’s personal preference
(e.g., based on service quality at certain BSS), and sensitivity
on time and cost (e.g., driving time from the current location
to the chosen station, and the service price). For a rational
customer, given the recommendation S, pjn,m(S) satisfies∑

(m,j)∈S

pjn,m(S) ≤ 1, (1)

pjn,m(S) ≤ pj
′

n,m(S), ∀j′ ≤ j,∀m. (2)

Inequality (1) holds by definition of conditional probability and
1 −

∑
(m,j)∈S p

j
n,m(S) is the probability that EV customer
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rejects all the options in the recommendation S.Inequality (2)
means that for the same station in a recommendation, customer
prefers a lower price. By intuition, the probability to accept a
nearby station with a low price will be higher than to accept a
remote station with a high price. Our choice model is consistent
with the principles of the multinomial logit choice model. We
have to point out that the choice probability pjn,m(S) can be
obtained from an online learning process, which is not our main
focus in this paper.
B. Offline Formulation for V2S Recommendation Problem

The goal of the V2SRS is to maximize its total revenue
before the next replenishment of FBs. We start from formu-
lating an offline revenue maximization problem by assuming
the knowledge of arrival information of all EV customers,
namely, the arrival sequence N and the corresponding choice
probability {pjn,m(S)}S,(m,j),n. xn(S) is the decision variable
determining the probability that the system will recommend S
to customer n. The offline revenue maximization problem can
be formulated as follows

max
xn(S)

N∑
n=1

∑
S⊆A

xn(S)
∑

(m,j)∈S

rjmp
j
n,m(S) (3)

s.t.
N∑
n=1

∑
S⊆A

xn(S)
∑

j:(m,j)∈S

pjn,m(S) ≤ km, m ∈M,

(4)∑
S⊆A

xn(S) ≤ 1, n ∈ N , (5)

xn(S) ≥ 0, n ∈ N , S ⊆ A. (6)

The offline problem is an efficiently solvable linear program
(LP). The objective is to maximize the expected revenue by
serving all customers. Note that

∑
(m,j)∈S r

j
mp

j
n,m(S) is the

expected revenue given the recommendation S. Constraint (4)
is the inventory constraint, which restricts the total number of
consumed FBs in each BSS to be no more than its initial FB
inventory. Constraint (5) further restricts that sum of the proba-
bilities for the system to make different recommendations is no
greater than 1. Note that V2SRS may offer no recommendations
when constraint (5) is not binding. We denote the optimal total
revenue by OPT.

C. Online Algorithm for V2S Recommendation Problem

In the online setting, for each arriving EV customer n,
the system needs to determine the recommendation based on
the current system information (e.g., the number of consumed
FBs in each station before serving customer n) and its choice
probability pjn,m(S).

The basic idea behind our design of the online algorithm
is straightforward. When there is high inventory of remaining
FBs, the system operator will sell the FBs with low prices to
avoid the risk of having leftover FBs, which are valueless at the
end of the day. When the inventory of the FBs is limited, the
system operator would like to reserve the small number of FBs
to serve the later arriving customers with high tolerance for
higher prices, to make more profit. These two cases indicate

that myopic policies without considering the inventory level
will cause a loss of profit.

We design an online algorithm considering the inventory
level by strategically reserving some FBs for future customers
who can accept higher prices. The core of this algorithm is
to quantify the value of each one unit of the remaining FBs.
From intuition, we know that when the remaining inventory
decreases, the value of one unit of FBs increases. Then we
design a value function φm of remaining inventory for each
station m based on this principle, which is a piece-wise in-
creasing function defined on the fraction of the initial inventory
consumed. It satisfies that φm(1) ≥ rJmm when all FBs are
consumed. Thus, when station m has no more FBs, the pseudo-
revenue is non-positive and we will not recommend station m
to any customer. This ensures constraint (4) holds. The system
then can make a decision considering both price levels and
the value of remaining FBs to choose the recommendation
that can maximize the expected pseudo-revenue. We denote
the total revenue earned by the online algorithm by Ron. Here,
we present our online primal-dual algorithm as the following
Algorithm 1. In Algorithm 1, Vn−1,m is the number of

Algorithm 1 Online Primal-dual Algorithm

1: V0,m ← 0 for all m ∈M.
2: for n = 1, 2,. . . , N do
3: Compute S∗ by solving (7),
4:

max
S∈A

∑
(m,j)∈S

pjn,m(S)

(
rjm − φm

(
Vn−1,m
km

))
, (7)

5: where A is the set of all feasible station-price combina-
tions for customer n.

6: if the optimal value of (7) is strictly positive then
7: Recommend S∗.
8: if customer n accepts any option (m∗n, j

∗
n) ∈ S∗ then

9: Ron ← Ron + r
j∗n
m∗n

.
10: Vn,m∗n ← Vn−1,m∗n + 1.
11: end if
12: else
13: Offer no recommendation.
14: end if
15: end for

consumed FBs in station m before customer n comes. V0,m
is set to be 0 for all stations. The online primal-dual algorithm
will recommend the subset S∗ to make a maximal pseudo-
revenue for customer n and update the remaining inventory
after the customer makes its choice.

Definition 1. An online algorithm is c-competitive if Ron ≥
c · OPT.

In the next section, we will show the performance of the
proposed online algorithm is guaranteed by a competitive ratio
when the value function φm is wisely designed.

III. ONLINE PRIMAL-DUAL ANALYSIS
We choose competitive ratio as the performance metric of the

online V2S recommendation algorithm. As a theoretical lower
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bound, competitive ratio quantifies the worst-case performance
measure, which is represented by the ratio between the revenue
Ron of an online algorithm and the revenue of the offline
problem OPT.

We analyze the competitive ratio of our proposed online
algorithm by an online primal-dual approach. The dual problem
of the offline primal problem (1) is

min
λm,µn

M∑
m=1

kmλm +
N∑
n=1

µn (8)

s.t.
∑

(m,j)∈S

λmp
j
n,m(S) + µn ≥

∑
(m,j)∈S

rjnp
j
n,m(S), (9)

n ∈ N , S ⊆ A,
λm, µn ≥ 0, m ∈M, n ∈ N . (10)

Here, we will introduce the basics of the online primal-dual
analysis method. First, we show the online algorithm produces
a feasible primal variable x and achieves the primal objective
P (x), which is easily verified by our online setting. Then, we
show feasible dual variables (λ,µ), which can be found based
on x and achieves a dual objective D(λ,µ). In order to ensure
our online algorithm can achieve a competitive ratio c, we need
to guarantee cD(λ,µ) ≤ P (x).

We set dual variables λm = E[φm(VN,m/km)], and µn =
E[Un], where Un is defined as the pseudo-revenue earned
by serving customer n. Un = rjm − φm(Vm,n−1/km) for
∀(m, j) ∈ S∗, if customer n accepts the combination (m, j),
otherwise Un = 0. µn is the expectation of Un. Note that
randomness of Un consists of two dimensions. First, the
recommendation S is based on the system state Vn−1,m (i.e.,
the number of consumed FBs by previous n − 1 customers),
which depends on the realization of previous n− 1 customers’
choices. Second, customer n will make choices based on the
choice probability pjn,m(S). Since, φm and Un are nonnegative,
we can verify constraint (10).

For each n ∈ N , the algorithm will make a decision based
on the current system information (e.g., remaining FBs) to
earn a maximal pseudo-revenue. Therefore, we can have the
conditional expectation for any S ⊆ A:

E[Un|Vn−1,m] ≥
∑

(m,j)∈S

pjn,m(S)

(
rjm − φm

(
Vn−1,m
km

))
.

(11)
Given the number of consumed FBs in different stations, the
system will recommend the corresponding subset S∗ to earn
a maximal pseudo-revenue, and thus the left hand side (LHS)
of (11) is greater or equal to an arbitrary subset S. Then, by
using the tower property of conditional probability, we take an
expectation for both sides of (11) and take the summation over
all combinations included in subset S

µn = E[E[Un|Vn−1,m]]

≥ E

 ∑
(m,j)∈S

pjn,m(S)

(
rjn − φm

(
Vn−1,m
km

)) . (12)

Because φm is an increasing function, we have

λm = E
[
φm

(
VN,m
km

)]
≥ E

[
φm

(
Vn−1,m
km

)]
. (13)

Thus, by substituting (12) and (13) in to the LHS of (9), we
can verify (9) .

From above, we prove the feasibility of the primal and dual
variables obtained from the online setting. Now we show how
to achieve a performance guarantee of our online algorithm.
By applying weak duality, we can obtain

OPT ≤
M∑
m=1

kmE
[
φm

(
VN,m
km

)]
+

N∑
n=1

E[Un] (14)

=
N∑
n=1

E

[
M∑
m=1

km

(
φm

(
Vn,m
km

)
− φm

(
Vn−1,m
km

))
+ Un

]
.

To achieve a competitive ratio c, we need to ensure cD(λ,µ) ≤
P (x) =

∑N
n=1 E[Rn], where Rn is the revenue by serving

customer n. Thus, we enforce the following inequality holds
for realized sample path of customer’s choice
M∑
m=1

km

(
φm

(
Vn,m
km

)
− φm

(
Vn−1,m
km

))
+Un ≤

Rn
c
. (15)

Note that the LHS of (15) is the term inside the expectation in
(14). Suppose customer n fails to get battery swapping service
(either the system offers no recommendation or customer n
rejects all options). Then we have Vn,m = Vn−1,m, Un = 0,
and Rn = 0, which indicates (15) will always hold when a
customer fails to get the service. If customer n chooses one
option (m, j), we have Vn,m = Vn−1,m + 1, Un = rjm −
φm(Vn−1,m/km), and Rn = rjm, then we rewrite (15)

km

(
φm

(
Vn−1,m + 1

km

)
− φm

(
Vn−1,m
km

))
+ rjm − φm

(
Vn−1,m
km

)
≤ rjm

c
.

(16)

Theorem 1. If we can design the value function φm for
any swapping station m, and any customer n, which satisfies
(16), then the online primal-dual algorithm can achieve the
competitive ratio c.

The proof for Theorem 1 is straightforward through the
above analysis.

A. Value function design

Now, we have changed our problem into how to design a
value function φm to ensure the validity of (16) for all (m, j),
and furthermore to maximize the competitive ratio c. When
km → ∞ (actually, the number of initial FBs is very large),
we can have

lim
km→∞

km

(
φm

(
Vn−1,m + 1

km

)
− φm

(
Vn−1,m
km

))
= lim
km→∞

φm(wm + 1/km)− φm(wm)

1/km
,

where wm is the consumed fraction of the initial inventory in
station m, namely, a multiple of 1/km. As explained in Section
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II, we design φm as a piece-wise increasing function, and set
the value on the each segment border Ljm exactly the price rjm.
The segment border Ljm ∈ [0, 1] is the ending point for each
piece (Lj−1m , Ljm) of φm, and L0

m = 0, LJmm = 1. Then we can
rewrite (16) for each piece (Lj−1m , Ljm) of φm

φ′m(wm)− φm(wm) ≤ rjm(
1

c
− 1). (17)

Then we solve the differential function to get the value function
φm at each piece (Lj−1m , Ljm) by binding the inequality. Setting
φm(Lj−1m ) = rj−1m and φm(Ljm) = rjm, we can obtain
φm(wm) = Aewm − rjm(1/c− 1), where

A =
rjm − rj−1m

eL
j
m − eLj−1

m

, (18)

c =
1− e−(Lj

m−L
j−1
m )

1− rj−1m /rjm
. (19)

Therefore, c must be set to minj 1−e
−(L

j
m−L

j−1
m )

1−rj−1
m /rjm

to make (17)
hold on each piece. Then we want to maximize the minimal

value of 1−e−(L
j
m−L

j−1
m )

1−rj−1
m /rjm

, for ∀j ∈ Jm, which is achieved by

setting 1−e−(L
j
m−L

j−1
m )

1−rj−1
m /rjm

equal for all j ∈ Jm. In this way we can
derive each segment border Ljm. Since, r0m = 0 and L0

m = 0,
we can derive the competitive ratio c

c = min
m

1− e−L
1
m . (20)

We can also derive the value function φm by substituting c
and Ljm into (17) and binding the inequality. Interested readers
can refer to [17] for more details about the design of the value
function φm.

IV. SIMULATION RESULTS
In this section, we evaluate the performance of our online

recommendation model and validate our algorithm by a case
study of Hong Kong (HK). We consider the total 18 districts
4 swapping stations and mark them on a HK map. Each BSS
has two different prices (low, high) for battery swapping. All
FBs are the same with a capacity C= 20kWh. Based on the
different electricity price of the three areas of Hong Kong
(New Territories, Kowloon and Hong Kong Island), we set two
different prices for the 4 swapping stations. Suppose we have
N EV customers in one day, and we will vary the total number
of EV customers by a loading factor (LF), which is the average
number of customers for one unit of initial FBs.

A. Choice Model of Customers in HK
In this subsection, we show how we estimate the choice

model of EV customers.
• CASE 1. If there is only one combination (m, j) in the

subset S, we estimate the choice probability based on both
the distance dn,m between the location of customer n and
BSS m and the price level rjm. In this case, we denote the
probability by pjn,m when only one combination (m, j) is
recommended.

pjn,m ∝
1

(dn,m, r
j
m)
. (21)

Fig. 2: An illustration of Hong Kong map, including 18 districts
and main roads.

TABLE I: SERVICE LOAD SPLIT

Percentage of Customers Split
New Territories Kowloon HK Island

Station A 61% 16% 11%
Station B 25% 62% 2%
Station C 14% 21% < 1%
Station D < 1% < 1% 85%
Total 100% 100% 100%

• CASE 2. If there are more than one options in the subset
S, the customer will have a probability pjn,m(S) based on
the given subset S. For any customer n, we can obtain
the probability pjn,m(S) based on the multinomial choice
model as

pjn,m(S) =
pjn,m∑

(m,j)∈S p
j
n,m + p0(S)

, (22)

here, p0(S) is the probability the customer will not accept
any option in subset S.

We assume that for any customer n ∈ N : {1, . . . , N}, it can
submit a request for FBs at any location on the roads of HK.
We use the population density in each district to estimate the
potential FB demand density. When a random request appears,
the online V2SRS can know the location of that customer, and
it estimates the probability pjn,m(S) for any (station, price)
combination in S.

B. Performance Analysis of Load Balancing across Areas

We name the 4 swapping stations as Station A, Station
B, Station C and Station D in Fig. 2. The initial number of
FBs of the corresponding stations are 400, 600, 400 and 200
respectively, which are fixed and will not be replenished in one
day. We have to point out that the number of initial FBs can
also be optimally placed, which will be a long-term planning
problem. In this paper, we focus on balancing the service load
in different areas to ensure each customer will be recommended
a station with available FBs for swapping. By splitting the
customer flow to nearby areas, we can achieve a maximal total
revenue and avoid the FBs consumed too fast in some of the
BSSs.

From the numerical results in Table I, (1) we can identify
that the customers who accept recommendations from V2SRS
in New Territories, Kowloon and HK Island are further split into
the 4 swapping stations. (2) only low percentages of customers
in New Territories and Kowloon go to HK Island for FBs, and
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low percentage of customers in HK Island go to the other two
areas. This shows the rationality that few customers are willing
to travel far away across tunnels (between Kowloon and HK
Island) for FBs.

C. Comparison with Heuristic Online Algorithms

In this subsection, we compare the performance of our
proposed online algorithm with two heuristic algorithms (AlG.1
and ALG.2). ALG.1 and ALG.2 always recommend feasible
stations with low prices and high prices, respectively, without
considering the inventory level. In Fig. 3 (a), we compare the
test results of the three algorithms for 10 instances with two
LFs (0.8, 1.2), and measure the performance of these algorithms
by the ratio Ron/OPT, where Ron is the revenue of online
algorithms. Note in each instance, we have different customer
sequences and random customer choices. In Fig. 3 (b), the
performances of these algorithms are compared by different
LFs, which validates that our online primal-dual algorithm
achieves a good performance for a large range of customer size.
Note for ALG.2, the ratio gets close to 1, when LF becomes
large enough. It is reasonable that ALG.2 can sell out all FBs
with high prices, when the customer size is very large.
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Fig. 3: Performance comparison between primal-dual algorithm
and heuristic algorithms

V. CONCLUSION
In this paper, we formulate an online V2S recommendation

problem with the consideration of customers’ choice model. We
design an online primal-dual algorithm, which is guaranteed
to have a bounded performance. In particular, we conduct
a case study based on a real Hong Kong map. From the
data analysis of 18 districts in Hong Kong, we estimate EV
customers’ choice model to achieve both customers’ service
quality guarantee and total revenue maximization. The sim-
ulation results show that our proposed online algorithm can
achieve a competitive ratio of 0.5898 and outperforms other
heuristic algorithms.
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