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Abstract—Battery Energy Storage System (BESS), as one type
of the storage systems, serves as a particularly important role
for future power grid systems. However, since both the capital
cost of BESS and the potential economic value vary dramatically
for large-scale systems, the total cost induced by BESS remains
a major source of uncertainty for potential power system oper-
ators when the limited lifetime of BESS is taken into account.
Therefore, appropriate configuration and operation of BESS are
of paramount importance for its deployments in practice. In this
paper, we propose a novel model for BESS that attempts to
capture the fact of limited lifetime and to exploit the potential
economic value. We develop a finite horizon optimization model
for BESS operators with unknown stopping-time. The stopping-
time is determined by the policy itself, which makes the problem
technically challenging. We first propose an algorithm called
Forward-iteration of relaxed-Linear Programming (FirLP), which
solves the problem by iterating on every time instance and achieves
the optimality. Subsequently, we observe that some time instances
are not necessary to be iterated on. Thus, we propose Jump-
iteration of relaxed-Linear Programming (JirLP). By utilizing
a well defined jump step, we can avoid exhaustive iteration on
those unnecessary time instances. We examine our model and
algorithms with the real price data. The computational results
further validate our model, and shows that our proposed JirLP
can achieve optimality and reduce the unnecessary iterations by
50% in comparison with the FirLP.

I. INTRODUCTION

With the rapid growing demand in electricity, concerns over
carbon emission and security problems, the power grid system
is foreseen to have more self-incentively participated customers
enabled by bi-directional communication and widely adopted
distributed energy storage devices. As a key component for
power system, energy storage has an extremely broad usage
including peak demands shaving, power reliability improve-
ment, and costs reduction [1]. Based on its various usages, the
number of different energy storage technologies is very large,
which includes pumped hydro, compressed air energy storage,
battery energy storage, super capacitors, etc.

Despite all these potential advantages of energy storage sys-
tem, both the capital cost and potential economic value could
vary from tens of thousands into tens of millions of dollars per
year for large-scale systems. Hence, unless proper incentives
and pricing policies are in place, all the aforementioned values
of storage might not be fully materialized by the power
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system due to underinvestment [2]. Therefore, development
of economic models and characterization of the associated
operational policies are of paramount importance. This paper
aims at providing such characterization by presenting a novel
model for battery energy storage with lifetime constraint as a
response to dynamic electricity price.

In this paper, different from most of the existing literatures,
we explicitly consider the limited lifetime of BESS, and high-
light the effects of lifetime on the economic value of BESS. By
noticing that the lifetime of BESS strongly depends on charge-
behaviors and discharge-behaviors, we first propose a practical
model to map the lifetime of BESS into the operational policy.
Based on this model, we formulate an optimization problem
to determine the optimal operational policy for the BESS to
maximize its potential profit. We use the real price data to
validate our model. Based on the experimental results, we
conduct analysis and provide suggestions for BESS operators.

A. Related Work

The existing literatures already cover a large dimension of
the energy storage problems in power system. It is known
that characterizing the optimal operational policy for BESS is
related to some classic inventory control problem. Nevertheless,
the optimization problem for BESS is much more complicated
when we take the practical properties of battery storage system
into considerations, e.g., the battery’s ramping constraints and
the lifetime constraints. Next we discuss the related works from
two main bodies as follows.

The first line of works focus on renewable energy integra-
tion. For example, Su and Gamal in [3] studied a short-time
scale fast-response energy storage model in which storage and
fast-ramping generation play the primary role of balancing
fluctuations in demand and renewable energy power. In order
to maximize a defined service lifetime/unit cost index of the
energy storage system, Li et al in [4] proposed a dispatch
strategy based on the statistics of long-term wind speed data.
The strategy tries to maintain a charge-discharge-charge cycle
for BESS, which is, however, somewhat unnecessary today as
the development of battery technology.

The second line of works focus on economic analysis of
battery energy storage, which are strongly related to our model
in this paper. Harsha et al in [5] studied the optimal storage
investment problem based on a balancing control mechanism.
They found that for storage to be profitable under the balancing
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policy, the ratio of amortized cost of storage to the peak price
of energy should be less than 1/4. The most related work
to ours is [6], in which the authors analyzed the economic
value of energy storage with ramp-constrained in response to
stochastically varying electricity price. Specifically, the authors
in [6] found that the economic value of storage capacity is a
non-decreasing function of price volatility, and showed that due
to finite ramping rates, the value of storage saturates quickly as
the capacity increases, which is regardless of the price volatility.

B. Our Contribution

In this paper, we discuss the arbitrage value of a BESS oper-
ated under the electricity spot market. The major contributions
of the paper are summarized as follows.

1) Novel Battery Model Formulation: We formulate the
battery as a lifetime-constrained and capacity decaying
queuing model. By using the Ah-throughput Model [7],
we connect the lifetime to the detailed charge and dis-
charge policy. Furthermore, we illustrate the detailed
charge and discharge feasible region and provide a simple
and yet practical model for capacity decaying process.

2) Objective Formulation with Unknown Stopping-Time: We
formulate an optimization problem to maximize the over-
all profit along the lifetime of BESS, where the stopping-
time depends on the control variables, i.e., it is a finite
horizon optimization problem with unknown stopping-
time. To the best of our knowledge, this is the first attempt
to investigate the energy storage problems using such
model.

3) Jump-iteration of relaxed-Linear Programming: We first
solve the formulated problem by brute force iteration,
named as Forward-iteration of relaxed-Linear Program-
ming (FirLP). By considering the property of the fea-
sible policy, we further propose a low-complexity and
computational-efficient algorithm called Jump-iteration
of relaxed-Linear Programming (JirLP). The JirLP elim-
inates some time instances and directly jumps to a future
time instance with a well-defined jump step, which thus
avoids performing optimization over 50% of the total
iterations by the FirLP.

The rest of the paper is organized as follows. In Section II,
we introduce the arbitrage model of the BESS, in particular, the
lifetime-constrained and capacity decaying model for battery
and the reward model for operators. In Section III, we find
the optimal policy and analyze the economic value of BESS.
Subsequently, we use the real market electricity price data
to validate our proposed model in Section IV. Based on the
simulation results, we further investigate the economic value
of BESS. We conclude our paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Most of the batteries work under one of the three modes
(i.e., charge, discharge and idle). The BESS operator decides
the amount of electricity charged in (or buy from the market)
and discharged out (or sell back to the market). We consider
the decision is made periodically over a finite time horizon
(denoted by T = {0, 1, ..., Tm}, where Tm denotes the Max-
imal Expected Lifetime of the BESS, which will be specified

later in this section). Let t ∈ T denote the discrete time index
corresponding to the decision epoch for time interval (t, t+ 1].
We consider the following parameters for general batteries with
notations specified.

• Energy Rating is also commonly known as the capacity
of the battery with the unit of MWh. We use S to denote
its initial capacity and St to denote the decaying process
within its lifetime.

• Power Rating represents the maximal rate the battery
can be charged or discharged at. We denote the charge
and discharge profile as ct, dt, while using cmax, dmax for
charging and discharging power rating, respectively. Power
rating is also commonly known as the ramping constraints
for the battery, the unit is MW or W.

• Efficiency consists of charge and discharge efficiencies,
which are denoted by ηc and ηd, all bounded by the range
of (0, 1].

• Ownership Cost is defined as the total money spent on
the BESS setup, which basically consists of initial capital
cost, hardware deployment costs like wiring, housing and
cooling system. We assume the cost is known to the
operator, which is denoted by M .

A. Battery Model

We denote Bt as the battery level at time t, we have
Bt ≤ Bt ≤ B

t
,∀t, where B

t
, Bt denote the maximal and

minimal allowable level of the battery. Notice that we always
have Bt = γ1S

t, B
t

= γ2S
t, where γ1 and γ2 are coefficients

which are determined by the depth of discharge. Based on the
action {ct, dt}, the battery level Bt evolves according to

Bt+1 = Bt + ηcc
t − 1

ηd
dt (1)

Considering the power rating constraints and the limited
capacity, we have

0 ≤ ct ≤ min{Bt −Bt, cmax} (2)

0 ≤ dt ≤ min{Bt −Bt, dmax} (3)

There exists a large number of works discussing the lifetime
modeling for various kinds of batteries. Among all these
models, the Ah-throughput Model assumes that there exists a
fixed amount of energy that can be cycled through a battery
before it needs to be replaced, and more importantly, this fixed
amount is independent of the depth of the individual cycles or
any other parameters specific to the way the energy is drawn in
or out of the battery [7]. With this, we assume that the rating
throughput of our BESS is denoted by Θm. The throughput
already used up to time t is then defined as

Θt =

{
0 t = 0∑t−1
τ=0(ηcc

τ + dτ

ηd
) t ∈ T \{0}

(4)

Therefore, Θt should be bounded by [0,Θm]. Notice that by
using the Ah-throughput model, the lifetime of BESS can be
interpreted as the longest time a BESS can last before the total

IEEE SmartGridComm 2013 Symposium - Support for Storage, Renewable Resources and Micro-grids

727



Bt B
t St

Bt

µt

0

cmax

−dmax

B
t − cmax Bt + dmax

B
t −Bt

Bt −Bt

battery level range

I

Power Constraint
Region

II Power Constraint
Region

III
Available Capacity
Constraint Region

IV

Available Energy
Constraint Region

F t

Fig. 1. Feasible action region for battery. In this figure, we define µt = ηcct−
dt/ηd as the net energy flow through the BESS, i.e., ct =

max(µt,0)
ηc

, dt =

ηd max(−µt, 0). The efficiency ηc = ηd = 1 for simplicity. Note that ct ·
dt = 0, means at most only one of them has positive value, which means the
battery can only be in one of the working modes.

used throughput up to time t is less than or equal to the rating
total throughput Θm, which is given by

sup
{
t|
t−1∑
τ=0

(ηcc
τ +

dτ

ηd
)︸ ︷︷ ︸

Θt

≤ Θm

}
(5)

Based on the above Eq.(5), we transfer the lifetime into
charge and discharge policy. Therefore, the lifetime of BESS is
directly related to how the battery is used. As we have indicated
in Section I, in practice, the capacity of BESS will decay during
its lifetime. An easy observation is that, at the beginning of the
operation, S0 = S, which is the initial level of capacity, while
at the end of lifetime, we have St = ρS, where t is obtained
from (5), ρ is a constant, and a typical value for ρ is 80%1.
Before modeling the capacity decaying process, we first make
the following assumption.

Assumption 1: The capacity will degrade when the battery
is working on charge and discharge modes while it will remain
unchanged in idle mode.

Based on Assumption 1 and the aforementioned boundary
condition, St can be formulated as (suppose that the capacity
is linear in Θt)

St = S · (1− 1− ρ
Θm

·Θt) (6)

Basically, (6) captures the fact that the battery’s lifetime de-
creases quickly if it is charged/discharged frequently, and its
lifetime remains unchanged if it is idle. Here we ignore the
environmental effects and the battery leakage.

We summarize our battery model in Fig. 1. The electricity
level Bt is always bounded within the region [Bt, B

t
]. The

gray area is the feasible action region, which is denoted as
F t, and the other four regions are the two Power Constraint

1ρ is defined as the threshold for capacity decaying below which the operator
is obligated to replace the battery. For example, if a battery that has been
operating for years is only able to supply 70% of its nominal capacity, the
battery is considered dead [7].

Regions (i.e., I,II), the Available Capacity Constraint Region
(i.e., III) and the Available Energy Constraint Region (i.e., IV).
Since the capacity St will decrease during the operation, a
quick observation is that the grey region will gradually shift
to the left. Another important observation is that the feasible
action region is a convex polyhedron, which thus facilitates our
following solution methodology.

B. Objective for BESS Operators

To capture the economic value as well as the limited lifetime
property of BESS for operators, we consider a finite-time
horizon. Recall that the terminal time of the battery storage
depends on the operation policy, i.e., the charge and discharge
profile of each time slot along the lifetime. Therefore, the time
horizon in our problem is a function of ct and dt.

Recall that we use the constant Tm to denote the Maximal
Expected Lifetime of the BESS. Alternatively, Tm means the
exit time2 of the portfolio (i.e., the BESS) for the investor (i.e.,
the BESS operator). Since the lifetime of battery defined in (5)
can be either shorter or longer than Tm, the time horizon in
our profit-maximization problem can be formulated as

T (c,d) = min

{
Tm, sup

{
t|Θt ≤ Θm}

}
(7)

where c = (cτ )tτ=0 and d = (dτ )tτ=0 represent the
charge/discharge profile sequence up to time t. The above
Eq.(7) means that the stopping epoch of the time horizon should
be the minimal between the pre-estimated epoch Tm and the
real terminal epoch of the BESS.

We model the reward function as the total money we make
by selling electricity minus the total money of buying electricity
from the market plus the holding cost. Thus, the reward
R(ct, dt, p̂t) in period t is a function of the triple (ct, dt, p̂t),
and it can be formulated as

R(ct, dt, p̂t) = (p̂t − α

ηd
)dt − (p̂t + αηc)c

t − htBt

=


−(p̂t + αηc)c

t − htBt ct ∈ R+, d
t = 0

−htBt ct = 0, dt = 0

(p̂t − α
ηd

)dt − htBt dt ∈ R+, c
t = 0

Remark 1: By using the Ah-throughput model, the cost of
per unit electricity use of the battery is denoted by α = M

Θm
,

which is a proportional coefficient mapping the charge and
discharge profile into the monetary cost. ht is the holding
cost factor for battery which is assumed to be known to the
operator. ht depends on the working condition like weather,
temperature, etc. p̂t is the predicted dynamic electricity price
at time t. Since in this work we only focus on the pre-
assessment of the economic value of BESS, we do not explicitly
consider any specific prediction model. We assume that the
price is obtained by the state-of-the-art prediction method
and it remains deterministic in our model3. Actually, for the

2Exit time of a portfolio means the time when the portfolio will be liquidated.
Based on the BESS and market analysis, the operator of the BESS only cares
about how much profit it can achieve during the period of Tm hours. Detailed
information can be referred to [8].

3We assume that the BESS operator in this paper is a small one compared
to the whole market. Thus, the decision made by this operator will not affect
the pricing mechanism in the whole market.
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deployment of BESS, operators are always interested in the
potential reward in the 3-5 years [1], which implies that, it
will be impractical to use the existing state-of-the-art electricity
price prediction models to make forecasts in such a long time
in advance.

Remark 2: Here, we explicitly formulated the reward as
a piecewise function in three parts, which corresponds to the
three working modes of the BESS. Note that, charging and
discharging at the same time will not be optimal for sure, since
we impose per unit electricity use cost for the BESS, i.e., the
value of α.

Therefore, the problem can be formulated as a deterministic
optimization problem over a finite horizon but with an unknown
stopping-time as follows

maximize
{dt,ct}

{ T (c,d)−1∑
t=0

[
R(ct, dt, p̂t)

]}
subject to (1)− (7)

(8)

We maximize the reward over the time horizon which either
stops at epoch Tm (i.e., the case that the BESS lasts longer than
what we expect) or at the end of BESS’s lifetime (i.e., the policy
ends the life of battery before Tm). The objective function
is piecewise linear, and all constraints are linear in ct and
dt. However, the stopping-time T (c,d), which determines the
dimension of the LP, is coupling with the control variables, and
thus makes the problem hard to solve. This difficulty motivates
us to design efficient algorithms to solve this problem.

III. OPTIMAL POLICY AND ECONOMIC VALUE OF BESS

An intuitive way to use battery is to charge it when the
price is low and discharge it when the price is high. However,
in general, it is impossible to quantify such a threshold which
separates the ”high” price and ”low” price region, because the
threshold may depend on the current level of battery and the
throughput already used up to the current stage. For the same
problem with given stopping-time, i.e., when T (c,d) reduces
to a constant, we can solve it directly by linear programming.
In fact, this case corresponds to that when the real battery life
is longer than Tm. In other words, the battery is good enough
such that it never stops working before Tm. In this paper, we
consider a more general case that the battery may end its life
before Tm or after Tm. We next give the concept of optimal
policy and economic value of BESS under this general case.

Definition 1: For a BESS operator, the optimal policy is
a vector of tuple (c∗,d∗)T (c∗,d∗) = (ct,∗, dt,∗)

T (c∗,d∗)
t=0 ∈

F0 × F1 × · · · × FT (c∗,d∗) such that, ∀(c,d)T (c,d) 6=
(c∗,d∗)T (c∗,d∗), we have

V

(
(c∗,d∗)T (c∗,d∗)

)
≥ V

(
(c,d)T (c,d)

)
(9)

Where the left-hand-side of (9) represents the economic value
of BESS, which is defined as the maximal potential profit as
follows

V

(
(c∗,d∗)T (c∗,d∗)

)
=

T (c∗,d∗)−1∑
t=0

R(ct,∗, dt,∗, p̂t) (10)

According to Definition 1, we know that the optimal policy
should achieve two goals simultaneously: 1) the battery will
end its life at T (c∗,d∗), which is, either terminating at epoch
Tm or ending before Tm when sup{t|Θt ≤ Θm} < Tm; 2) the
potential profit is maximized.

A. Forward-iteration of relaxed-Linear Programming

We first propose an algorithm to solve problem (8). The
basic idea of this algorithm is to relax constraint (7) about
the stopping-time T (c,d) and to change it to a conventional
finite horizon problem with a given stopping-time.

Specifically, suppose that we relax constraint (7) and change
problem (8) to the conventional finite horizon problem with
time index t ∈ {0, 1, · · · , T}. Meanwhile, to guarantee the
feasibility, we also add another constraint:

T−1∑
t=0

(ηcc
t +

dt

ηd
) ≤ Θm (11)

After these operations, the objective function with constraints
(1)-(4), (6) and (11) forms a standard LP as follows

maximize
{dt,ct}

T−1∑
t=0

[
R(ct, dt, p̂t)

]
subject to (1), (2), (3), (4), (6), (11)

(12)

Problem (12) is a relaxed version of problem (8), and we
name it as r-LP for simplicity. Based on r-LP, we give the
following Theorem 1, which characterizes the optimal policy
and economic value of BESS for problem (8).

Theorem 1: ∀T = [1, Tm], we obtain the optimal policy
(c∗,d∗)T and economic value V

(
(c∗,d∗

)
T

) for r-LP by iter-
ating each T . We denote TΘ = [1, Tm]

⋂
{T |ΘT = Θm}. Then

the optimal policy for problem (8) is obtained by the following
conditions:

V
(
(c∗,d∗)T (c∗,d∗)

)
= max
{T∈TΘ}

{
V
(
(c∗,d∗)T

)}
(c∗,d∗)T (c∗,d∗) = arg max

{(c∗,d∗)T |T∈TΘ}

{
V
(
(c∗,d∗)T

)}
(13)

The rationale behind Theorem 1 is to enumerate all the
possible stopping-epoch from 1 to Tm. Then, the optimal
policy must be the one such that it satisfies the condition (13).
Theorem 1 is based on the Forward-iteration of relaxed-Linear
Programming (FirLP). We omit the proof in this paper.

Remark 3: FirLP is intuitive and straightforward. However,
the computational complexity is high when the time horizon is
long and thus hinders its usage in practice (e.g., for 3-5 years
of time horizon). Hence, we further propose a low-complexity
algorithm to solve problem (8) in the next section.

B. Jump-iteration of relaxed-Linear Programming

Based on Definition 1, if we have a feasible policy which
can operate BESS over a longer time horizon, it is unnecessary
to check what the economic value of BESS is over a shorter
one. The reason is that the operator will always have incentive
to use it if the BESS can physically last to future time.
Based on this observation, we can simply skip some of the
time instances and directly jump to a far away time instance
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by a certain jump step. Therefore we propose another low-
complexity and computationally efficient algorithm to solve
problem (8) with guaranteed optimality, which is named Jump-
iteration of relaxed-Linear Programming (JirLP).

For JirLP, we use the same input information as FirLP. How-
ever, instead of iterating over each stage before Tm, we check
constraint (7) to determine the next time instance to be iterated
on. More specifically, if ΘT−1 =

∑T−1
t=0 (ηcc

t+ ηd
dt ) = Θm, we

simply jump to the next stage, which is the same as the FirLP.
Otherwise, we calculate the gap between ΘT−1 and Θm, which
is denoted by ∆Θ, and then obtain the safe jump step ∆T and
directly jump to stage T + ∆T to be iterated on4. The pseudo
code for JirLP is shown below as Algorithm 1.

Algorithm 1: JirLP
Data: p̂t, B0, S, Tm,Θm, ρ, h

t, γ1, γ2, ηc, ηd, c
max, dmax

Result: (c∗,d∗)T (c∗,d∗), V
(
(c∗,d∗)T (c∗,d∗)

)
, T (c∗,d∗)

begin
T ←− 1;
TΘ ←− ∅;
while T ≤ Tm do

obtain the optimal policy (c∗,d∗)T and economic
value V

(
(c∗,d∗

)
T

) by solving the r-LP Problem;
if
∑T−1
t=0 (ηcc

t + ηd
dt ) = Θm then

T ←− T + 1;
TΘ = TΘ

⋃
{T};

else
∆Θ ←− Θm −

∑T−1
t=0 (ηcc

t + ηd
dt );

∆T ←− d ∆Θ

max{ηccmax,dmax/ηd}e;
T ←− min{Tm, T + ∆T };

end
end
V
(
(c∗,d∗)T (c∗,d∗)

)
= max
{T∈TΘ}

{
V
(
(c∗,d∗)T

)}
;

(c∗,d∗)T (c∗,d∗) = arg max
{(c∗,d∗)T |T∈TΘ}

{
V
(
(c∗,d∗)T

)}
;

T (c∗,d∗) = arg max
{T |T∈TΘ}

{
V
(
(c∗,d∗)T

)}
;

end

The principle behind the JirLP is similar to the idea of
slow start in the Transportation Control Protocol (TCP) for
computer communication networks. When the throughput is
far from being used up (analogy to that the transmission
condition is good), we jump with a large step (analogy to
the exponential increase of TCP congestion window). On the
other hand, when the throughput is already used up (analogy to
that the transmission condition is bad, i.e., congestion or large
packet loss), we jump with a step equal to 1 (analogy to TCP’s
congestion avoidance phase). The JirLP can achieve optimal
policy since it will never miss any time instances when the
throughput is used up, i.e., for those T ∈ TΘ.

IV. COMPUTATIONAL EXPERIMENT

In this section, we employ numerical computations to ex-
amine our battery model and validate our assumptions. The

4In Algorithm 1, in the calculation of ∆T , we use the symbol dxe to denote
the smallest integer that is larger than or equal to x.

setup of the dynamic electricity price is as follows. As stated
in Section II-B, we focus on the pre-assessment of economic
value of BESS, thus we do not explicitly consider the detailed
model to predict data p̂t. We apply the model to the real-time
wholesale market data taken from NYISO[9]. NYSIO reports
the real time price for every five minutes from 1999 until
present. We take the actual data from NYISO for the whole
year of 2012, and then average over one hour to get the hourly
price. For the BESS, we assume α = 10, and the capacity is
assumed initially to be S = 100MWh with the power rating
cmax = dmax = 20MWh. we assume the rating throughput
Θm = 600MWh. Due to the space limitation, here we choose
the price between [0, 100] and simulate the time horizon with
Tm = 100 hour5.

We show the potential economic value of BESS in Fig. 2(a).
By using the FirLP, we are iterating over each possible time
instance, which is shown as the red curve in Fig. 2(a), while
as we expect, the JirLP will directly jump over those small
time instances since they are impossible to be the stopping-
time. Both algorithms will iterate on every time instance when
the rating throughput is used up, since it is possible for each
time instance to have the optimal profit. We also illustrate
the economic value achieved by the existing scheme when
lifetime issue is not taken into consideration. As shown by
the dashed curve in Fig. 2(a), when the total used throughput
is not greater than the rating throughput, both the economic
value achieved by the existing scheme and our approach have
the same performance, which is shown by the overlap of the
three curves when T ≤ 60 in Fig. 2(a). However, when the total
used throughput is over the rating throughput, the economic
value of the existing scheme suffers from sharp decrease, which
is shown by the circle in Fig. 2(a). The reason is that, the
“optimal” policy obtained by neglecting the lifetime constraint
cannot be completely implemented in reality (truncation of the
scheduled policy). In Fig. 2(b), we show that both the total used
throughput obtained by the FirLP and the JirLP will eventually
be bounded by the rating throughput Θm. We also compare the
efficiency under different time horizon of Tm. As shown in Fig.
2(c), by using the JirLP, we can avoid iterating on over 50%
of the total iteration by the FirLP. One interesting observation
from Fig. 2(a) is that, even though points A, B, C, D and E
represent operating the BESS with the same throughput (all
bounded by Θm), which correspond to the five points in Fig.
2(b). However, the total economic value achieved is very much
different. This tells us that, even under the same price situation
and exactly the same BESS, different policies will result in
totally different economic value.

Fig. 3 shows that the trajectory of the BESS operated under
the optimal policy when Tm = 100, and the optimal policy
terminates the lifetime of BESS at time t = 91, which can be
seen from Fig. 2(a) and Fig. 2(b). As shown in Fig. 3(a), the
capacity will decay when the BESS is charging or discharging
and remain unchanged in idle. The BESS eventually decays to
80% of the initial capacity since we assume ρ = 0.8 . Fig. 3(b)
shows the charge and discharge profile in each stage over the
entire time horizon. We can observe that due to the per unit
usage cost of BESS, the BESS will keep idle for most of the

5This simulation could be readily extended to thousands of time horizons.
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Fig. 2. Economic value and throughput sample path for the BESS. Comparison of computational efficiency between the FirLP and the JirLP.
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Fig. 3. Trajectory for the BESS operated on the optimal policy; (a) capacity decaying process;(b) charge and discharge profile each stage;(c) battery level.

stages to avoid the loss from inappropriate charges/discharges.
Meanwhile, based on the current price and the current level of
BESS, the BESS will switch its working mode between idle,
discharge and charge, as depicted both in Fig. 3(b) and Fig.
3(c). The level of BESS will eventually shrink to the minimal
when it reaches the lifetime of BESS, as shown in the red circle
in Fig. 3(c).

V. CONCLUSION

In this paper, we propose a novel model to exploit the
potential economic value of the BESS with an explicit lifetime
constraint. We develop a finite-time horizon optimization model
for the BESS operator to maximize its profit under an unknown
stopping-time. We first propose the FirLP, which solves the
problem by iterating on every time instance. We further observe
that some of the time instance are not necessary to be iterated
on. Thus, we propose the low-complexity algorithm JirLP by
eliminating some of the unnecessary time instances during the
search. The results show that both the FirLP and the JirLP
achieve the optimal policy, while the JirLP can avoid optimizing
over 50% of the total iterations by the FirLP.
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