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Abstract: Historically, transportation electrification has been largely hindered by the limited battery capacity and the long
charging time. Battery swapping has emerged as one promising technology to mitigate these problems. A centralised battery
charging station (BCS) is responsible for charging depleted batteries (DBs) and providing fully-charged batteries (FBs) for
multiple geographically-distributed battery swapping stations (BSSs) so that they can carry out battery swapping services.
Facilitated by the recent advancement in sensor and communication technologies, one salient advantage of this centralised
approach lies in its convenience to better utilise dual energy sources (i.e. the traditional power grid and local renewable energy
generators). This is achieved via optimising the charging processes of a large number of DBs. In this study, the authors propose
an optimisation framework for a centralised BCS to minimise the energy cost from the dual energy sources to satisfy the FB
demands from multiple BSSs. Particularly, the power dispatch problem in the day-ahead and real-time electricity markets is
formulated as a two-stage stochastic optimisation through consideration of the intermittent renewable energy. Numerical
simulations show that the proposed optimised power dispatch is capable of achieving cost saving of 76% compared with the
benchmark, subject to the limited information available in day-ahead.

1 Introduction
With rising emphasis placed on environmental protection and
resource conservation today, transportation and electricity
generation still contribute over 60% to the global primary energy
demands [1], the majority from fossil sources. Extensive
application of electric vehicles (EVs) and renewable energy
generation is an inevitable trend [2]. This is increasingly happening
in many countries especially for public transportation [3, 4].
Personal ownership is also realised thanks to many major
automobile manufacturers such as Tesla [5] and BYD [6]. Such a
transition essentially shifts sources of emission from
geographically distributed individual vehicles to a few centralised
power plants, simplifying pollution control to some extent.

However, the status quo is still far from perfection. Firstly, the
electricity used by EVs is still mainly generated from fossil sources
in many countries as of today. As a result, pollution might be
merely migrated elsewhere without much reduction, violating the
main purpose of introducing EVs [7]. Secondly, current battery
technology is still incapable of storing enough energy for a
medium-to-long-distance trip, so an EV owner has to charge the
battery very frequently to alleviate the range anxiety (i.e. the fear
that an EV would fail to reach its destination due to insufficient
energy). Furthermore, the EV would be stuck charging for tens of
minutes or even several hours, depending on its charging mode [8]
and initial state-of-charge (SOC) level. Such a long duration not
only limits the EV's flexibility, reducing the incentive for wider
adoption but also increases society cost by demanding more
charging facilities to be built with high density in order to make it
easy for EV owners to find one.

1.1 Workflow and challenges of battery swapping

To overcome these drawbacks, a battery swapping strategy can be
applied [9]. Under this strategy, the batteries in all EVs have plug-
and-play mounting capabilities through a unified interface. At a
battery swapping station (BSS), EVs get their depleted batteries
(DBs) swapped with fully-charged batteries (FBs) by human staff
or automated robots. This is nearly instantaneous compared with

hours of in-house charging. Preferably, a BSS should have
sufficient inventory of FBs to accommodate random EV arrivals.

Although the DBs can be charged inside the BSS locally as has
been considered in our previous work [10], this would complicate
the BSS structure, and bring about spatial and safety issues. These
are fatal, especially for crowded urban areas. In this regard, we
focus on another feasible way in this work, which is to regularly
send the DBs to a contracted centralised battery charging station
(BCS) to produce FBs. This is depicted in Fig. 1. Each contract
would specify the FB demands of the participating BSS on a per-
time-slot basis, e.g. every one or several hours. The BCS is then
responsible for producing and delivering timely and adequate FBs
to all of its contracted BSSs. In reality, many municipal authorities
in China, such as Hangzhou and Guangzhou [11], have built their
electric bus system in such a distributed swapping and centralised
charging mechanism. Compared with traditional plug-in charging,
battery swapping improves efficiency and flexibility of charging
facilities, here the charging bays (CBs) in a BCS. This is because
the statistics of EV arrivals no longer directly affect charging
scheduling [9]. As a result, both EV owners [12] and grid operators
[13] enjoy numerous benefits including but not limited to a fast
energy refuelling service and load balancing [14]. 

In particular, such a structure enables the control centre to
easily access and manipulate the system states and parameters
using modern sensor and communication technologies. This further
opens up possibilities to utilise dual power sources, i.e. the
conventional power source (CPS, typically the distribution grid)
and the renewable power source (RPS), by optimising the charging
process of a large number of DBs. In this way, the green renewable
energy is utilised more, fully justifying adoption of EVs [7].
However, in order to achieve this goal, several crucial challenges
need to be tackled, namely, the difficulties to accurately predict:

• Renewable energy generation in fine granularity, due to its
intermittent and time-variant nature [15].

• Real-time pricing (RTP) of electricity in short term, since the
electricity market operates with a very complicated mechanism
[16].
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Without working around these two problems, blindly
integrating renewables would introduce great threats to the stability
of EV charging systems as well as the grid via the uncertain
amount of available energy [17, 18]. A smart charging scheme
shall consider these aspects so that efficiencies in both energy
consumption and cost are realised [19, 20]. Hence, in this work, we
focus on finding the optimal power dispatch (OPD) to the CPS and
the RPS, respectively, in order to minimise the total charging cost
subject to the operational constraints and satisfaction of the FB
demands.

1.2 Related works

Motivated by the aforementioned benefits, increasing research
effort has been put into developing the battery swapping strategy
from the perspectives of operation research and power engineering.
For instance, Raviv [21] defined the BCS battery charging
scheduling as an inventory management problem, simultaneously
optimising the profit or cost and satisfying the FB demands.
However, the charging rate of each CB was assumed to be fixed. In
[22], the optimal battery charging and purchasing strategies were
extended from a single BCS to a network of BCSs to balance the
short-term operational cost and the long-term investment in
batteries. A more recent paper [23] leveraged the queueing network
model and formulated a constrained Markov decision process to
solve for the optimal charging policy, but that was for the local
charging and swapping mode instead of centralised charging. All
the above works have provided extensive insight into the optimal
operation of the battery swapping strategy, yet without considering
the integration of renewable generation.

On the other hand, although not much investigation exists in
applying renewable energy specifically to the battery swapping
strategy, the smart grid community has indeed seen a few related
attempts in the broader field of EV charging. For example, a price-
incentive model based on the power balance between the
renewable generation and the loads was proposed in [24] to
coordinate the charging of EVs and the BSS to minimise the total
cost of EVs and maximise the profit of the BSS. Zhang et al. [25]
described the uncertainty of EV arrivals, the intermittence of
renewable energy and the variation of the grid power price as
independent Markov processes, and minimised the mean waiting
time for EVs under the long-term cost constraint. Recently, Jin et
al. [26] adopted Lyapunov optimisation to avoid having to know
the statistics of the underlying processes of renewable energy
generation, EV charging demands or extra energy pricing a priori.
Despite the above great efforts, to the best of our knowledge, no
previous work has addressed any problem specifically on
integrating renewable energy into the optimal charging of a
centralized EV BCS.

1.3 Our contributions

Compared with previous works, our OPD has the following
advantages:

• Renewable energy is efficiently integrated to centralised EV
battery charging, without having to know its exact realisation in
day-ahead. This not only reduces the operational cost of the
BCS but also avoids underutilisation of the precious renewable
energy due to its intermittent generation. It is worth emphasising
that no additional energy storage device is required under our
approach.

• The proposed two-stage stochastic optimisation formulation
enables the BCS operator to participate in demand response [27]
with high confidence in the day-ahead purchase of grid power as
well as quick reaction to RTP fluctuation. For the utility side,
having knowledge on the day-ahead commitment of its
customers (the BCSs) facilitates more effective infrastructure
planning and load forecasting [28].

• The novel model of the BCS operation is simple yet realistic to
capture the fundamental physical constraints. As a result, the
OPD problem can be solved efficiently with large-size and fine-
grained data.

The remainder of this paper is organised as follows. Section 2
models the battery charging process and the system constraints.
The OPD is formally formulated as a two-stage stochastic
optimisation problem in Section 3, and the sample average
approximation (SAA) method is deployed to tackle it. We show the
performance evaluation setup and perform a series of case studies
using real pricing data in Section 4. They would yield thought-
provoking numerical results on the impact of the system
parameters under our proposed OPD. Finally, Section 5 draws the
conclusion and suggests some future directions of the paper.

2 System model
2.1 Problem statement and assumptions

As illustrated before, the OPD problem requires the power dispatch
decisions to be made from the control centre's perspective based on
CPS pricing and RPS generation. If the power dispatch decisions
were made solely in real-time, the optimality would be largely
limited due to unforeseen fluctuations in renewable generation and
RTP, but it is generally difficult to accurately predict these as
discussed in Section 1.1. Therefore, we suggest decomposing the
OPD problem into the following two stages.

2.1.1 Stage 1 – day-ahead commitment.: Now the BCS
operator only needs to roughly predict the amount of renewable
energy generation and the RTP in each time slot (e.g. each hour) of
the coming day. Since the exact realisations of these two stochastic
processes are unknown yet, the objective at this stage is to find the
optimal purchased day-ahead grid power to minimise the total
expected charging cost over all possible realisations of them. A
purchasing request for grid power for each time slot of the
following day is then made in a day-ahead manner to the utility
company.

2.1.2 Stage 2 – real-time adjustment.: The total available
power, i.e. the generated renewable power plus the purchased day-
ahead grid power, may sometimes be inadequate for the optimal
aggregate charging load computed by the OPD. For instance, this
may happen when the CBs are rushing for some very urgent FB
demands. To compensate for the mismatch, extra grid power has to
be purchased in real-time. Note that the day-ahead and real-time
purchasing markets exhibit distinct pricing behaviours.

On the other hand, if in any time slot the OPD decides that the
aggregate charging load should be less than what is available, there
would be excess power. Often this is due to poor day-ahead
predictions. The utility company can thus buy this amount back at
another price level, preferably quite low to discourage excessively
large gaps and encourage higher day-ahead accuracy in turn. Since

Fig. 1  System model for the key components of a dual-source BCS.
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we have assumed no additional energy storage, this is the only
means of dealing with the excess amount, if not simply wasted.

Besides the energy cost, also worthy is that a faster charging
rate leads to more severe degradation of battery lifetime [29, 30].
Taking into account both concerns, the objective at Stage 2 is to
find the optimal aggregate charging rate of the entire BCS to
minimise the real-time cost. This consists of the electricity
payment for real-time grid power and the battery degradation cost.
The day-ahead cost is not covered now because it has already been
committed and can no longer be changed. However, given the day-
ahead commitment, the (bidirectional) real-time adjustment is
obtained via subtracting the total available power from the desired
aggregate charging rate, thus realising the optimal charging rate
solved from the OPD.

2.1.3 Assumptions.: For ease of illustration, the scheduling
horizon is set to be the following day, i.e. 24 h starting from the
current time epoch. The day is then further divided into T time
slots, each with a duration of 1 time unit, e.g. 1 h. The following
assumptions are made:

• The base load accounting for the BCS operation is ignored. The
total power consumption thus solely depends on the optimal
aggregate charging rate of the entire BCS, solved by the OPD.
Hence, from now on we focus particularly on the power dispatch
to the CPS, as the RPS dispatch is simply deducting the CPS
dispatch from the total.

• Due to the space and cost limitations, the RPS installed by an
individual BCS should not be large in scale. This would make it
suitable for a BCS to be located even in densely populated areas,
such as the city centre.

• The marginal cost for renewable generation is ignored. The
reason is that such a cost is mostly related to the initial inventory
investment, instead of the charging operation considered in this
work.

• No energy storage device other than the DBs being charged is
required or considered in this study. This is to avoid too much
energy being accumulated in a compact facility like a BCS since
it is neither cost-efficient nor safe.

• All the power values concerned with the model, e.g. charging
rate and renewable generation rate, are assumed to be constant
within any single time slot. Hence, a power rating for one time
slot is equal to the amount of energy consumed in the same time
slot numerically, and we will thus use the power and energy
terms interchangeably hereafter.

• The number of FBs that need to be available at a time epoch t is
called the FB demand at t. They are specified on a per-hour
basis in a contract. Hence, no FB demand exists at any other
time epoch. Also each of them is not cumulative, i.e. excluding
the FBs that should have been taken away before t.

• There are enough DBs in inventory to fulfil the FB demands
throughout the coming day before the day starts. This is to allow
for the highest scheduling flexibility.

• All batteries are homogeneous for the purpose of fulfilling the
FB demands. This is reasonable considering that the plug-and-
play interface is highly likely to be standardised in the near
future.

In summary, we are interested in finding the optimal amounts of
(i) purchased day-ahead grid power and (ii) the real-time aggregate
charging rate of the BCS, in each time slot, respectively, so as to
minimise the total expected charging cost.

2.2 System model

In this section, we consider firstly the model for the batteries, then
that for the entire BCS, during any time slot Tt = (t − 1, t] for
t ∈ {1, 2, …, T}.

2.2.1 Model for the batteries.: The FB demand at t is denoted by
Dt. Meanwhile, the BCS may have some initial FB inventory Fini at
time epoch 0. Hence, we define the cumulative new FB demand at

time epoch t as the minimum required total number of newly
produced FBs from the beginning of the day to t, given by

Ft =
max ∑τ = 1

t Dτ − Fini, 0 t < T ,

∑τ = 1

T Dτ t = T .
(1)

The case t = T  indicates that at the end of the scheduling horizon,
the FB inventory should return to its initial state Fini. This keeps the
operation of the BCS stable and sustainable. As a result, all the
required ∑τ = 1

T Dτ FBs should be produced by the end of the day,
but within the day some flexibility for charging scheduling is
allowed. Since all the Dt and Fini values are given, all the Ft's are
directly obtainable and hence fixed. Note that for the first few time
slots, if the initial Fini FBs can already meet the FB demands, there
may be no urgent need to produce new FBs, which justifies Ft's
being lower-bounded by 0.

From the above definition, we can easily derive that at least FT
FBs are required to be produced throughout the day, and
correspondingly the FT DBs are already waiting in the DB
inventory at time epoch 0 as assumed earlier.

For each individual DB b ∈ {1, 2, …, FT}, denote sb
ini as its

initial SOC level in the unit of energy, known to the BCS operator
a priori. (All units of power used in this paper are kW, and all units
of energy are kWh, unless otherwise specified.) Each battery b also
has an energy storage capacity, sb

max, perceived as readily available
through a pre-screening step. We calculate the required amount of
energy (sb

max − sb
ini)/ηb by each DB b to become an FB, where ηb is

its charging efficiency factor (given). Then we reorder the DBs in
ascending order of this value. The DBs also follow the same order
chronologically to be plugged into the CBs as well as to finish
charging. Hence, suppose we want to get totally f new FBs since
time epoch 0. The amount of energy that needs charging into the
batteries should be no less than ∑b = 1

f ((sb
max − sb

ini)/ηb).

2.2.2 Model and constraints for the entire BCS.: Let Rt denote
the constant aggregate charging rate over all the batteries staying
in the CBs during time slot Tt. A DB may finish charging and
become an FB at any time epoch (not merely limited to
t ∈ {1, 2, …, T}) when another DB instantaneously replaces the FB
in the CB and the latter enters the FB inventory immediately. This
is reasonable with current techniques of doing so within several
minutes [31] or even tens of seconds [32]. Then for all
t ∈ {1, 2, …, T}, the total amount of energy charged into the
batteries during (0, t] should be no less than the cumulative energy
demand so as to meet all the FB demand specifications. That is to
say

∑
τ = 1

t
Rτ ≥ ∑

b = 1

Ft sb
max − sb

ini

ηb
∀t s.t. Ft > 0. (2)

Additionally, the aggregate charging rate should be upper bounded,
i.e.

0 ≤ Rt ≤ Rmax ∀t, (3)

where Rmax is the upper bound in any time slot.
For any time slot Tt, use xt to denote the amount of energy to be

purchased from the CPS in day-ahead, and pt
DA for the day-ahead

market price for unit energy. Then the total day-ahead energy
payment of the BCS is ∑t = 1

T pt
DAxt. The optimal values of xt's, i.e.

xt
⋆'s, are obtained by solving an optimisation problem discussed in

the later sections.
In real-time, i.e. on the immediate day after the day-ahead

purchasing request has been made, the aggregate charging rates at
some time slots may differ from the generated renewable energy
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plus the day-ahead purchased grid energy, ξt + xt
⋆. Let the net

shortage part be denoted as

at = Rt − ξt − xt
⋆ . (4)

Hence, when at > 0, this amount of energy should be purchased
from the real-time market to support the optimal aggregate
charging rate in Tt. This leads to an additional payment of pt

RT,buyat,
where pt

RT,buy is the real-time market unit price. On the other hand, if
at < 0, i.e. when energy is already more than necessary in Tt
without real-time purchase, the excess amount −at can be sold
back to the grid at the price of pt

RT,sell. (Note that this price is non-
negative.) In this case, the payment is reduced by − pt

RT,sellat. Ideally,
if the market is totally rational, the condition
0 ≤ pt

RT,sell ≤ pt
DA ≤ pt

RT,buy should hold, though this is not required
as will be demonstrated in Section 4. There is also a battery
degradation cost CB(Rt) introduced by charging the batteries at
different charging rates during Tt. It is assumed to be a generic
convex increasing function. Combining the above cases gives the
total real-time charging cost as

CRT(x⋆, ξ, R) = ∑
t = 1

T
at pt

RT,buyI[at > 0] + pt
RT,sellI[at < 0]

+CB(Rt)

= ∑
t = 1

T
max pt

RT,buyat, pt
RT,sellat + CB(Rt) ,

(5)

where x⋆, ξ and R are all T-dimensional vectors (all the vectors in
this study are T-dimensional, unless otherwise specified), and

I[`statement'] = 1 if `statement' is true,
0 otherwise

is the indicator function.
It is trivial that the net grid power flow, i.e. the purchased day-

ahead power plus the real-time adjustment, can be obtained by
subtracting the generated renewable power from the aggregate
charging rate. Regardless of its sign, its magnitude should be upper
bounded by the power line delivery capacity [33], which may be
less than Rmax so as to increase the power line utilisation. Moreover,
the utility company may impose even stricter constraints with the
hope that the BCS can provide some ancillary services for the grid,
for example, frequency regulation. This yields

−xt
max ≤ Rt − ξt ≤ xt

max ∀t, (6)

where xt
max is the resultant magnitude of the maximum power that

can be drawn from or delivered back to the grid in Tt. As a special
case, if there is no additional requirement from the utility side, we
only consider the power line delivery capacity, which makes a
constant xt

max = xmax ∀t.
Finally, note that all the continuous decision variables are non-

negative. Then we define the total minimum real-time payment of
the BCS (excluding the day-ahead commitment already made),
given a renewable generation profile ξ, as

Q x⋆, ξ = minR ⪰ 0 CRT(x⋆, ξ, R)
s.t. (2), (3), (6) .

(7)

Hence, Q x⋆, ξ  is the minimal real-time cost, which is realised
through a set of optimal aggregate charging rates R⋆.

3 OPD problem formulation and solution

3.1 Problem formulation

From the previous subsection on describing the operation of a dual-
source BCS, the OPD problem is formulated as

minx ⪰ 0 ∑
t = 1

T
pt

DAxt + E Q x, ξ

s.t. (2), (3), (6) .

3.2 Solution to OPD

The above formulation essentially resembles the general
framework of a two-stage stochastic optimisation problem [34]. In
the first stage, since it is generally difficult to obtain a closed-form
expression of E Q x, ξ , the SAA method is often deployed to
approximate the expectation term in practice [35]. In particular, N
sample realisations of ξ, {ξ1, ξ2, …, ξn, …, ξN}, are generated, and
the problem is converted to the following form:

min
x, Rn ⪰ 0 ∀n

∑
t = 1

T
pt

DAxt + 1
N ∑

n = 1

N
CRT x, ξn, Rn

s.t. ∑
τ = 1

t
Rτ

n ≥ ∑
b = 1

Ft sb
max − sb

ini

ηb
∀t, n

0 ≤ Rt
n ≤ Rmax ∀t, n

−xt
max ≤ Rt

n − ξt
n ≤ xt

max ∀t, n,

where Rn corresponds to the optimal solution to Q(x, ξn). Hereafter,
this formulation is referred to as OPD-I. When the number of
constructed scenarios, N, is large enough, the second summation
term would be adequate to approximate the expectation on average
according to the law of large numbers [34]. However, N cannot be
excessively large due to the curse of dimensionality. Note that at
this point we do not have knowledge about the actual RTP
realisation yet, so the pt

RT,buy's and pt
RT,sell's that are plugged into the

first-stage calculation are estimated values from historical data,
achievable by methods such as [36].

In the second stage, x⋆, the optimal solution to OPD-I, is
regarded as fixed. Usually, at the beginning of the day we can
obtain the precise realisation of renewable energy generation
process or at least a more accurate version than we can do based on
historical data only. This can be achieved by various means [37,
38]. As a result, ξ is also fixed to ξ

^
, and denote

a^t = Rt − ξ
^
t − xt

⋆ . (8)

Also note that the actual RTP information, p^ t
RT,buy and p^ t

RT,sell, is
announced by the utility at this time. Then we derive the optimal
charging schedule by solving the following problem:

minR ⪰ 0 ∑
t = 1

T
max p^ t

RT,buya^t, p^ t
RT,sella^t + CB(Rt)

s.t. (2), (3),
−xt

max ≤ Rt − ξ
^
t ≤ xt

max ∀t .

However, it is impractical to obtain complete and accurate (or
actual) RTP and renewable generation information at the beginning
of the day. Only the RTP and the amount of generated renewable
energy for the current time slot are known. As a result, we propose
to attack the second-stage problem using a shrinking window
approach for the scheduling horizon. That means, at each time slot
Tt (t < T), we only have p^ t

RT, ⋅  and ξ
^
t as the actual RTP and

renewable generation, and pτ
RT, ⋅  and ξτ ∀τ ∈ {t + 1, …, T} are still

from the predicted values in day-ahead. Those time slots before Tt
do not need to be considered, as the decisions made already cannot
be improved. Then for each t ∈ {1, 2, …, T − 1} we solve the
problem iteratively:
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min
R(t) ⪰ 0

max p^ t
RT,buya^t, p^ t

RT,sella^t + CB(Rt)

+ ∑
τ = t + 1

T
max pτ

RT,buyaτ, pτ
RT,sellaτ + CB(Rτ)

s.t. (2), (3),
−xt

max ≤ Rt − ξ
^
t ≤ xt

max,
−xτ

max ≤ Rτ − ξτ ≤ xτ
max ∀τ ∈ {t + 1, …, T},

where R(t) = Rt ⋯ RT  is a (T − t + 1)-dimensional temporary
variable holding the best guesses for the charging rates in the
current and future time slots based on currently available
information. The first entry of R(t) ⋆ , the optimal solution for the tth
iteration, would be the decision taken for the current time slot,
whereas the rest are discarded. Certainly, when t = T , the problem
becomes

min
RT ≥ 0 max p^ T

RT,buya^T, p^ T
RT,sella^T + CB(RT)

s.t. (2), (3),
−xT

max ≤ RT − ξ
^
T ≤ xT

max

as a special case where R(T) = RT. In other words, if R⋆ is denoted
as the optimal solution for the entire second-stage problem, then

Rt
⋆ = R1

(t) ⋆ ∀t . (9)

This iterative formulation will be referred to as OPD-II from now
on.

After solving the optimal R⋆, the BCS operator can know how
to submit the real-time adjustment requests to the utility by

a^t
⋆ = Rt

⋆ − ξ
^
t − xt

⋆ ∀t . (10)

This gives a final total charging cost for the entire scheduling
horizon as

C⋆ = ∑
t = 1

T
pt

DAxt
⋆ + max p^ t

RT,buya^t
⋆, p^ t

RT,sella^t
⋆ + CB(Rt

⋆) . (11)

4 Numerical simulation
4.1 Simulation setup

This subsection will cover the data sources and parameters for
validation of our OPD algorithm. All of the conditions illustrated
here will be referred to as the base conditions unless otherwise
specified.

4.1.1 Scheduling horizon.: One day, with each time slot being
one hour.

4.1.2 Costs.: The day-ahead and real-time buying market pricing
data, pDA and pRT,buy, are from NYISO [39], and the real-time
selling-back market pricing data is determined by
pRT,sell = 0.3pRT,buy. All of them are in 1-h granularity. We select the
patterns for Wednesdays and Saturdays to represent a typical
weekday and weekend, respectively, and plot them in Figs. 2a and

b. The RTP curves are from five consecutive weeks' average to
reduce randomness of the real market. We also assume that for the
base conditions, we have accurate prediction on RTP, which leads
to p^ RT,buy = pRT,buy and p^ RT,sell = pRT,sell. Note that for real data, the
ideal condition 0 ≤ pt

RT,sell ≤ pt
DA ≤ pt

RT,buy does not have to always
hold, which is indeed violated several times in the data used here.
However, this will not affect the correctness of our algorithm as
long as we know the relative comparison among the three curves,
illustrated later through simulation. 

As for the battery degradation, for simplicity, the cost function
follows a quadratic form, i.e. CB(Rt) = cBRt

2, where cB is a cost
factor to link the charging rate to the degradation cost per unit time.
Here we set it to be 5 USD ⋅ (MW)−2.

4.1.3 Parameters for the batteries.: Each battery has a storage
capacity of sb

max = 100 kWh, with a charging efficiency of
ηb = 0.9 ∀b. The initial SOC of each battery, sb

ini, is randomly
generated from a uniform distribution in [0, 15] kWh.

4.1.4 Parameters for the BCS.: The BCS has 50 CBs to support
simultaneous charging of multiple DBs. The maximum allowed
charging rate for each CB is set to rl

max = 100 kW ∀l. Hence, we
can simply set Rmax = 5000 kW. At the beginning of the day, there
are Fini = 20 initial FBs in the inventory. The FB demand at the end
of each hour follows this pattern:

Dt =
Dvalley, 1 ≤ t ≤ 6 or 20 ≤ t ≤ 24,
Dnormal, 10 ≤ t ≤ 16,
Dpeak, otherwise,

(12)

where the meanings of the three demand values are self-
explanatory. Typically, 0 ≤ Dvalley ≤ Dnormal ≤ Dpeak. Here, Dpeak = 30
per hour for the peak hours of 7–9 am and 5–7 pm, Dnormal = 10 per
hour for the normal hours of 10 am–4 pm, and Dvalley = 5 per hour
for the remaining valley hours. Resultantly, the hourly energy
demands can be computed and plotted as the yellow bars in Fig. 2c.
The bars' heights are increasing even for hours with identical FB
demands since we have presorted the DBs' energy demands as
mentioned in Section 2.2.1. The grid power line transmission
capacity is set to xt

max = 4000 kW ∀t, assuming that the utility does
not impose an additional requirement for the BCS to provide
ancillary services. Note that we have xt

max < Rmax here.

4.1.5 Renewable generation.: The generation rate of the RPS, ξt,
is uniformly distributed in [1000, 1500] kW to simulate an average
wind turbine [40]. N = 100 scenarios are generated when
performing the SAA. For fair comparisons between runs, instead of
generating a new realisation of renewable generation for the second
stage of each run, the sample paths have a fixed pattern as depicted
by the green curve in Fig. 2c. Certainly it is not fed into the first
stage to prevent cheating.

4.1.6 Runtime environment.: The algorithm is implemented
using CVX [41, 42] in MATLAB R2015a on a Windows 10 PC
with a 3.20 GHz Intel Core i5 quad-core CPU and 8 GB RAM.

4.2 Results and discussion

4.2.1 Charging cost reduction.: We compare our proposed OPD
with a benchmark algorithm, which

• Does no day-ahead commitment.
• Uses up all renewable energy generated before purchasing real-

time grid power.
• Charges DBs at the fastest rate.
• Sells back excess renewable energy if any.

From the resultant CPS dispatch depicted in Figs. 3a and b,
under the base conditions for both weekdays and weekends, the

Fig. 2  Simulation setup
(a) Electricity price for weekdays, (b) Electricity price for weekends, (c) Hourly
energy demands and renewable generation
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benchmark simply finishes charging at the very beginning and
stays idle in the remaining time. The available information on
renewable generation and RTP is apparently not fully utilised. On
the other hand, our proposed OPD is able to adapt the charging
rates intelligently to minimise the overall cost. Note that under the
settings in Section 4.1.5, the RPS dispatches are always the same
over all base condition simulations, so we only plot the CPS
dispatch curves. 

The charging costs under both algorithms are listed in the first
two data rows of Table 1. Based on accurately predicted RTPs, our
OPD beats the benchmark scheme with a cost saving of 76%. This
is thanks to utilising the (supposedly often) cheaper day-ahead

market as well as the (zero-cost) renewable energy as much as
possible. 

4.2.2 Load balancing capability.: We compute the peak-to-
average ratio (PAR) of the charging rate under both schemes, with
the results shown in the third and fourth data rows of Table 1. The
PARs for the OPD on both days are much lower than those for the
benchmark scheme because our OPD is more effective in utilising
the more economical power source adaptively while the benchmark
scheme is prone to real-time fluctuations in both renewable
generation and price. Also, the average absolute CPS dispatch is
317.86 kW under OPD, and 1816.5 kW under the benchmark. Both
facts indicate that our OPD not only reduces battery degradation
due to high charging rates but also relieves the burden on the grid.
In return, the utility companies would have more incentive to
support the adoption of the battery swapping mode.

4.2.3 Robustness.: Note that at t = 5, 6 or 10, pt
DA > pt

RT,buy.
During those hours, the day-ahead commitments become zero, and
all the conventional power required for those hours is from the
real-time market, as depicted in Fig. 3. This shows that our OPD is
always feasible regardless of whether the market is ideal or not, as
long as the pricing irrationality (e.g. that the day-ahead price is
sometimes higher than that in real-time) is successfully forecast.

4.2.4 Impact of renewable generation.: For the remaining
discussions, we will use only the weekday setting as the base
condition. Firstly, the mean value of renewable power output,
denoted by ξ̄, is altered between 300 kW and 2000 kW with the
peak-to-peak amplitude fixed at 500 kW. Two sample dispatches
for ξ̄ = 300 kW and 2000 kW, respectively, are plotted in Figs. 4a
and b. The saving (i.e. the gap in Fig. 4c) is intuitively more
obvious with higher renewable penetration. This should encourage
BCS operators to consider integrating renewables in their facilities.

4.2.5 Impact of FB demands.: We fix the FB demands for the
valley and normal periods, and alter the peak period demand Dpeak
from 10 to 60 per hour. The resultant dispatches under
Dpeak = 10, 30 and 60 are illustrated in Figs. 5a, 3a and 5b,
respectively. From Fig. 5c, the cost saving of the OPD compared
with the benchmark scheme is more evident with higher FB
demands. This is a valuable result for a busy BCS serving multiple
BSSs of probably the whole metropolis, which would be the typical
situation after popularisation of EVs. 

5 Conclusion and future work
This work has studied the OPD problem for a dual-source
centralised EV BCS. The formulation aims at finding the cost-
minimal power dispatch to the CPS and the RPS subject to
satisfaction of the specified FB demands. We formulate the OPD as
a two-stage stochastic optimisation problem and solve it using
SAA. The formulation is simple yet capable of capturing the
fundamental physical constraints, and the convergence is
reasonably fast on an average PC. Numerical simulations using real
price data have been presented to validate the proposed OPD
model and demonstrated the effectiveness of the algorithm with
regard to some affecting factors.

The formulation allows for many potential extensions. For
instance, currently, the FB demands and individual battery
parameters are perceived as given. If the DB arrival is also

Fig. 3  Power dispatch under the base conditions
(a) Power dispatch on a weekday, (b) Power dispatch on a weekend

 

Table 1 Charging cost saving and load balancing capability
of OPD
Metric OPD Benchmark
Charging cost (weekday) (USD) 262.11 1087.77
Charging cost (weekend) (USD) 252.61 1073.17
PAR (weekday) 1.59 3.81
PAR (weekend) 1.39 3.81

 

Fig. 4  Impact of renewable generation
(a) Power dispatch when ξ̄ = 300 kW, (b) Power dispatch when ξ̄ = 2000 kW, (c)
Total charging cost w.r.t. renewable generation

 

Fig. 5  Impact of FB demands
(a) Power dispatch when Dpeak = 10 per hour, (b) Power dispatch when Dpeak = 60 per
hour, (c) Total charging cost w.r.t. peak FB demands
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stochastic, the model can be updated with a more flexible
representation of the minimum required energy. Moreover,
bidirectional charging (i.e. allowing both charging and discharging
of the batteries) is essential to enabling battery-to-grid service [43].
This is an important component of ancillary service such as
frequency regulation [44] but has not been discussed in this study.
We also leave the more theoretical proofs, such as the performance
bound, as future work of this application-driven paper.
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