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Abstract—To accommodate the increasing electric vehicle (EV)
penetration in distribution grid, coordinated EV charging has
been extensively studied in the literature. However, most of
the existing works optimistically consider the EV charging rate
as a continuous variable and implicitly ignore the capacity
limitation in distribution transformers, which both have great
impact on the efficiency and stability of practical grid oper-
ation. Towards a more realistic setting, this paper formulates
the EV coordinated discrete charging problem as two succes-
sive binary programs. The first one is designed to achieve a
desired aggregate load profile (e.g., valley-filling profile) at the
distribution grid level while taking into account the capac-
ity constraints of distribution transformers. Leveraging the
properties of separable convex function and total unimodu-
larity, the problem is transformed into an equivalent linear
program, which can be solved efficiently and optimally. The
second problem aims to minimize the total number of on-off
switchings of all the EVs’ charging profiles while preserving
the optimality of the former problem. We prove the sec-
ond problem is NP-hard and propose a heuristic algorithm
to approximately achieve our target in an iterative manner.
Case studies confirm the validity of our proposed scheduling
methods and indicate our algorithm’s potential for real-time
implementations.

Index Terms—EV charging, discrete charging level, load valley-
filling, binary quadratic program, total unimodularity.

I. INTRODUCTION

AS THE environmental pollution and fossil fuel scarcity
incur increasing concern all over the world, electri-

fication of transportation has attracted a wide range of
attention from government, industry and academy. Electric
vehicles (EVs) emerge as promising components to substi-
tute the conventional vehicles in the future smart grid [1], [2].
Correspondingly, how to accommodate the large-scale EV pen-
etration with stable and convenient energy support becomes
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a crucial issue for both the power grid operators and the
government policy makers.

Currently, the main EV refueling techniques can be cate-
gorized into two approaches. The first approach is the slow
but economic EV charging that happens in places such as
homes, parking lots and street charging spots, where EVs
can be left idle for a relatively long time without emergent
refueling requirement. In contrast, the other refueling method
is provided in some specific EV refueling stations that are
capable of fulfilling fast driving range extension within a time
duration compatible to refueling a traditional gasoline vehicle.
Though some leading companies (e.g., Tesla) have proposed
super charging and battery swapping techniques which can
shorten the refueling time significantly [3], the wide deploy-
ment of infrastructure with such techniques not only requires
time to be completed but still takes time to reach adequate
market demand. Thus, slow EV charging overnight in resi-
dential areas is still expected to be the first choice of most
individual EV owners in the near future [4], [5].

However, large-scale slow charging in residential areas
introduces significant electricity consumption and may bring
harmful large peaks to existing distribution gird [2], [4].
Although the increase of total energy demand can be sup-
ported by gradually upgrading infrastructure capacity, unex-
pected large load peaks would require adequate backup of
expensive fast generators, increase power losses of trans-
mission/distribution lines, and frequently overload grid com-
ponents (e.g., transformers and cables) especially in weak
distribution grid [2], [4], [7]. Therefore, from the grid oper-
ator’s point of view, the EV charging is expected to be
coordinated so that the total energy consumption, includ-
ing the base load and EV charging load, can be shaped to
achieve a desired total load profile at the distribution level,
which helps maintain the energy efficiency and grid stabil-
ity. On the other hand, participating in charging coordination
is also beneficial for EV owners. Typically, EV owners are
flexible with charging time but expect to lower down their
electricity bills as long as their EVs can be charged to their
target SoC levels before certain deadlines. Thus, the coordi-
nation of EV charging offers EV owners the opportunity to
bid in the electricity market as a whole for achieving lower
charging cost.

Motivated by the above reasons, the coordination of EV
charging has been extensively studied in recent years (to be
reviewed in the next section). In particular, most of the existing
works consider the coordination of EV charging based on the
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assumption that EVs can adjust their charging power contin-
uously between zero and their maximum charging rates (i.e.,
continuous charging). However, due to the limitations of the
current battery technology (e.g., the lithium-ion battery) and
EV charger technology (e.g., the constant-current constant-
voltage approach [6]), EVs can only draw an approximately
constant power during charging periods (i.e., discrete charg-
ing) [5], [6], [16]. Although the continuous charging method
is promising to be commercialized in the future, we envision
that the discrete charging method will still be the dominating
one in the near future, and will co-exist with the continuous
charging method in the long run.1 Therefore, it is of practi-
cal importance to investigate the coordination of EV charging
based on the discrete charging method, and this motivates our
work.

In summary, our contributions in this paper are three-fold.
i) We propose an offline EV coordinated discrete charging
model with grid capacity constraints. In particular, the model
is formulated as two successive binary programs that aim to
optimize the total load variations and total number of on-off
switchings in the charging process, respectively. Our optimal
solution not only serves as a benchmark for the EV dis-
crete charging with grid capacity constraints but also provides
insights to derive efficient algorithms for real-time implemen-
tations; ii) The EV coordinated discrete charging problem is
transformed into an equivalent linear program (LP) leveraging
the underlying properties of its separable convex objective and
totally unimodular constraint coefficient matrix. Thus, the first
binary program can be solved efficiently and optimally by just
solving an LP; iii) The second binary program is proven to
be NP-hard in the strong sense. Hence, we design a heuristic
algorithm to merge charging periods of each EV to prevent
undesirable frequent on-off switching during the EV charging
process.

II. RELATED WORK

We consider the EV coordinated charging problem from an
optimization perspective. Therefore, we first review the related
literature on how to formulate the EV coordinated charging
problem, and then further survey the directions of algorithmic
development for EV coordinated charging.

Typically, there are three dimensions to control the charg-
ing process in EV coordinated charging problems: space
(which EV to charge), time (when to charge) and speed (at
what rate to charge). Most of the existing works [8]–[15]
choose the continuous charging rates as their decision vari-
ables, which can affect the charging time and the charging
speed for each EV. Such problems have been formulated
as linear [8]–[10] or convex quadratic [11]–[15] programs
for various objectives and can be solved by either central-
ized [8]–[12] or decentralized [13]–[15] methods leveraging

1This is because both the discrete charging method and the continuous
charging method have their own advantages and disadvantages. For exam-
ple, the discrete charging method is easier to be implemented because it only
requires a simple on/off controller with communication capability. However,
it is less flexible for providing grid services. In comparison, the continu-
ous charging method is more flexible but requires more sophisticated and
expensive control devices.

extensive convex optimization techniques. However, due to
the limitation of the charging circuit, the continuous charg-
ing rate is difficult to be implemented and chargers in current
practice can only support several discrete charging levels as
mentioned in the previous section. There are a rather lim-
ited number of papers discussing the potential problems that
may be induced when the EV charging rate is discrete. The
works [16], [17] consider the uninterruptible discrete charging
case, and the proposed optimization problems try to decide
the optimal instance to start charging for each EV. In particu-
lar, a decentralized randomized algorithm is designed in [16],
which solves the problem in an iterative manner and its subop-
timal ratio is theoretically derived and proven. However, such
algorithms suffer from heavy computation and communication
overheads. Reference [17] proposes a scalable greedy algo-
rithm to lower down the computational complexity. However,
the optimality of the algorithm cannot be guaranteed. In addi-
tion to the aforementioned literature, the space dimension in
the decision space is constantly ignored. For example, the
papers [12]–[14], [16], [17] implicitly assume that charging
performances are independent of EV locations. However, it
is usually not the case in practice because specific charg-
ing locations can greatly affect the congestion conditions over
the weak distribution transformers. To avoid exceeding the
transformer capacities, [9] iteratively maximizes the network
flow and finds a feasible solution in a centralized manner,
but it is computationally expensive and lacks optimality guar-
antee. References [10] and [11] explore the impacts of EV
charging on the distribution transformers in more details and
schedule the EV charging process centrally taking the capac-
ity constraints into consideration. To reduce the computational
complexity, [15] uses the ADMM technique to include the net-
work capacity constraints in its decentralized algorithm, but
the proposed method induces more communication overheads
to achieve an optimal solution.

The recent follow-up papers [18]–[21] on the EV coor-
dinated charging problem mainly focus on two important
directions: how to make the control algorithms scalable
for the increasing population of EVs, and how to design
real-time/online algorithms to mitigate the impacts of
uncertainties from the EVs (e.g., plug-in time, energy
demand) in practical implementations. Most of the existing
works [13]–[15], [18]–[20] achieve scalability by designing
decentralized algorithms based on their corresponding central-
ized algorithms. While other works try to design new control
architectures to derive scalable algorithms. For example, [21]
decomposes the centralized problem into three steps, and opti-
mization is only performed in one of the steps to obtain
the optimal aggregate load profile. Subsequently, the opti-
mal aggregate load is distributed efficiently in a market-based
mechanism among all the EVs. In order to design online algo-
rithms for coordinated EV charging, the main problem is how
to model and integrate uncertain EV load into the real-time
decision process. To address this issue, [22] proposes to scale
up the total EV load by a properly chosen factor when doing
the scheduling to compensate for the underestimation of the
future EV load. Instead of simply scaling up, other works esti-
mate the future load by simulation [20] or analyzing historical
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Fig. 1. Illustration of distribution grid in North America.

data [19], [21]. Specially, it can be proven that the subopti-
mality of the algorithm in [20] vanishes as the time horizon
increases.

In the literature, it is a common way to design online or
decentralized algorithms based on their corresponding offline
centralized formulations. Convexity of the centralized problem
plays an important role in guaranteeing the low computa-
tional complexity for the online algorithms and optimality
for the decentralized algorithms. However, when considering
the physical constraints (e.g., the power flow constraints [19],
the discrete charging rate [16]) in the EV coordinated charg-
ing problem, the centralized problem becomes non-convex
and the corresponding online decentralized algorithms with
performance guarantee will be difficult to achieve. To cope
with the non-convexity, convex relaxation [19] and random-
ization [16] are introduced to derive distributed algorithms.
Our problem in the rest of the paper is an offline centralized
non-convex problem, and our major focus is to show how
to transform this non-convex problem into an equivalent LP,
which is the simplest convex function. Thus, online decentral-
ized algorithms can be designed by leveraging the convexity
of the equivalent LP.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the scenario that a trustworthy EV coordinator
takes over the charging operation of all the EVs in the
downstream of a distribution substation. The control hori-
zon is divided into slots of equal duration �t (e.g., 15
minutes). Let T = {1, 2, . . . , T} denote the set of time
slot indexes. Fig. 1 illustrates a typical distribution network
in North America [23], in which high-voltage electricity
from transmission grid will be stepped down twice by the
respective substation transformer and distribution transform-
ers before it eventually reaches houses or public electrical
facilities (e.g., public parking lots) in the residential area. Let
N = {1, 2, . . . , N} and M = {1, 2, . . . , M} denote the set of
EVs and load buses (i.e., distribution transformers). According
to the topology of the distribution grid, N is divided into M
disjoint subsets N1,N2, . . . ,NM , where n ∈ Nm if EV n is
connected to load bus m.

A. Assumptions

1) Offline Information: We assume that the EV coordinator
is able to obtain the following information at the beginning of
the decision horizon.

• Topology of the distribution grid: Nm and M.
• Estimation of the base load on bus m at time t: Dm(t).
• EV charging specifications: plug-in time tin, plug-off time

tdn , energy demand en. The energy demand en represents
the number of time slots to charge EV n to its desired
SoC level.

Acting as a cooperator of the grid operator, the EV coordi-
nator can typically have access to the grid-side information
(e.g., topology and base load estimation) in order to maintain
the grid stability during the EV charging process. In addition,
for private EVs that are considered in this paper, their charg-
ing specifications can be predicted from the history charging
profiles with a reasonable accuracy according to the charac-
teristics of specific drivers’ driving habits and lifestyles. For
example, on a working day, an EV owner stops charging and
leaves for work at 8 a.m. and plug in their EVs after coming
back home at 6 p.m. with the energy consumed by commuting
on that day as his/her energy demand.

2) Single Charging Rate: Due to the trend to standardize
the charging equipment and limitation of charging technol-
ogy [5], [6], [16], EVs are first assumed to be charged at a
constant charging rate r0. The extension for the problem of
multiple charging rates will be discussed in Section IV.

B. Problem Formulation

An EV is said to be connected to the grid during the periods
between its plug-in and plug-off times. Let In,t be an indicator
function which equals 1 if EV n is connected at time t and 0
otherwise. For the single charging rate case, the basic problem
of EV coordinated charging is to decide whether to charge or
not for each EV during the periods it is connected. Specially,
the decision variables are denoted by the scheduling matrix U,
where each entry of U is denoted as follows:

un,t =
{

1 if In,t = 1 and EV n is charging at time t,
0 otherwise.

Note that EVs can only be charged when they are connected.
The objective of the EV coordinator is to reshape the total

load of the whole distribution grid to track some predetermined
load profile L(t), ∀t ∈ T (e.g., [13] and [16]). Typically, L(t)
is designed to either maximize the economic benefit in the
electricity market or minimize the operating cost under the
requirement of grid stability so that a triple-win result for
the EV coordinator, the grid operator and the EV owners
can be realized. Following [13], the objective function can
be formulated as

F(U) =
T∑

t=1

ft

(
r0

N∑
n=1

un,t + D(t) − L(t)

)
,

where D(t) = ∑M
m=1 Dm(t) denotes the total base load of

the distribution grid. ft(·) is a time-dependent convex func-
tion measuring the cost of deviating from target load profile
L(t) and ft(0) = minx ft(x) = 0. We illustrate two classes of
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Fig. 2. Illustration of penalty functions. x is the difference between the
resulting total load profile and target load profile.

target load profiles L(t) and their corresponding functions ft(·)
as follows.

• The EV coordinator acts as the utility company and
participates in the electricity market to minimize its
electricity cost by controlling EVs’ energy consump-
tion profile. For example, the electricity market in [26]
is divided into two stages, where the EV coordinator
first determines L(t) as the total energy consumption of
the distribution grid in the day-ahead market and buys
deficient (or sells superfluous) electricity in the balance
market at additional cost. In Fig. 2, both piecewise-linear
and deadzone-linear functions can model the penalty of
electricity imbalance in the balance market. Deadzone
exists if the EV coordinator owns some energy storage
devices to compensate its load fluctuation.

• The EV coordinator is regulated by the grid operator and
tries to minimize the variations of the total load profile.
In this case, the load profile L(t) is designed to be the
average load over the whole time horizon (i.e., L(t) =
1
T

∑T
t=1(r0

∑N
n=1 un,t +D(t))) and the resulting total load

profile is well-known to possess the valley-filling prop-
erty [13], [16]. Quadratic and log-barrier functions in
Fig. 2 can be used to measure the cost of deviation from
the average load profile. Quadratic functions are a typi-
cal mean square measurement and log-barrier functions
penalize small fluctuations moderately but restrains the
deviations strictly within a certain range.

From the EV owners’ point of view, one fundamental
requirement for the EV coordinated charging is to fulfill each
EV’s energy demand before it plugs off. Mathematically, this
constraint can be captured by

tdn∑
t=tin

un,t = en, ∀n ∈ N . (1)

Equation (1) guarantees that each EV is allocated enough time
slots to charge to its desired SoC level during its connected
time periods.

From the grid operator’s perspective, stability is the key
issue to be considered. In the distribution grid, distribu-
tion transformers are usually regarded as the most vulner-
able components. In particular, a distribution transformer in

Fig. 3. Illustration of optimal charging profiles with different interruptions.
The top and bottom figures depict two optimal charging profiles with the same
aggregate load. However, it is clear that the bottom charging profile has less
interruptions which is more desired in practice.

North America typically serves approximately 10 houses and
only has a limited power capacity of 25 kVA [23]. Such
transformers will be easily overloaded when multiple EVs are
connected to the same transformer and charged at the same
time. Hence, in order to avoid overloading the distribution
transformers, the following capacity constraints have to be
respected

r0

∑
n∈Nm

un,t + Dm(t) ≤ Cm, ∀m ∈ M,∀t ∈ T ,

where Cm denotes the capacity of the distribution trans-
former m. After simple manipulations, the above constraints
can be transformed to∑

n∈Nm

un,t ≤ cm,t, ∀m ∈ M,∀t ∈ T , (2)

where cm,t = �Cm−Dm(t)
r0

� and �x� is the largest integer not
larger than x. Note that constraint (2) correlates the charging
process served by the same distribution transformer, which
imposes extra difficulties on solving the scheduling problem.

In summary, the optimal EV coordinated discrete charg-
ing (OCDC) problem can be formulated as follows,

OCDC : min
U

F(U),

s.t. (1), (2),

un,t ∈ {0, 1}, ∀n ∈ N ,∀t ∈ T . (3)

Let U∗ denote the optimal solution set of problem OCDC.
Note that the objective function of the OCDC problem is only
related to the aggregate load2 of all the EVs during each time
slot. Therefore, normally problem OCDC has multiple optimal
solutions that produce the same aggregate load. Such problem
structure helps define U∗ in a more straightforward manner
which will be shown in Section IV.

Besides, another problem for the EV coordinator is whether
all the optimal solutions of problem OCDC are suitable to be
implemented in practice, and if not, how to choose a better
one in U∗. In fact, both EV owners and the grid operator
prefer to have relatively smooth charging profiles. In other
words, the EVs prefer as few on-off switchings as possible
during their charging process. The arguments for the smooth

2The aggregate load refers to the total load (i.e., the summation of base load
and EV charging load) of the distribution network at one specific time slot.
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Fig. 4. Illustration of execution time for problem OCDC. Time slot duration
is set to be 15 minutes and capacity constraints are neglected. Each simulation
is repeated 10 times and the average execution time is shown.

charging profiles mainly come from two aspects as follows.
i) Frequent interruptions in the charging process may introduce
extra deterioration for batteries [16], [24]; ii) Switching-on
actions will create power spikes on the load buses, which
may threaten the stability of distribution transformers [25].
The feasibility of smoothing the charging profile is illustrated
in Fig. 3. Intuitively, the smooth OCDC (SOCDC) problem
can be formulated as

SOCDC: min
U

G(U) = 1

2

N∑
n=1

T∑
t=0

(
un,t − un,t+1

)2
,

s.t. U ∈ U∗, (4)

where un,0 = un,T+1 = 0,∀n ∈ N . The objective func-
tion G(U) represents the total number of on-off switch-
ings/interruptions of all the EVs.

Remark 1: In this paper, we focus more on the optimality of
problem OCDC because an interrupted charging process may
not incur any extra cost with the advance of battery/charger
technology in the future. Thus, we formulate problem OCDC
and SOCDC individually instead of combining them into a
single multi-objective optimization problem. If in the future
the battery and the grid can tolerate frequent charging interrup-
tions, then problem SOCDC is not needed so we can just solve
problem OCDC to obtain the optimal coordinated charging
solution. It is worth pointing out that the optimal load profile
always refers to the optimal solution of problem OCDC.

IV. SOLUTION METHODOLOGY

In this section, we will show the solution methodology
of the EV coordinated discrete charging problems. Problem
OCDC and SOCDC are both binary quadratic programs,
which are generally computationally intractable for large-scale
(e.g., more than 100 EVs) input instances due to their com-
binatorial nature. Fig. 4 compares the execution time3 using
our proposed OCDC algorithm (to be addressed in detail in
Section IV-A) and the execution time of commercial solvers

3The simulations are implemented on a virtual machine (VM) in our private
cloud. The VM gets 20 CPU cores from Intel Xeon ES-2470 v2 processor
(2.40 GHz) and 24 GB of memory. Because the execution time of the OCDC
problem has no theoretical bound, the calculation is forced to stop when the
execution time exceeds 1000 seconds.

(i.e., Cplex and Gurobi) for a simplified version of prob-
lem OCDC. It is shown that the OCDC problem becomes
intractable quickly with the increase of EV number. Thus, it
is important to design efficient algorithms for our proposed
problem leveraging its special structure. In the following part,
we first introduce how to transform problem OCDC into an
equivalent LP. Then, based on the optimal solution of the
OCDC problem, we show a complete formulation of prob-
lem SOCDC and prove that problem SOCDC is NP-hard in
the strong sense. Finally, we propose a heuristic algorithm to
search for an optimal charging profile with less interruptions.

A. Optimal Coordinated Discrete Charging

A function is defined as separable convex if it can be
represented by a sum of single-variable convex functions.
Separability is a desired property for tractable integer pro-
grams [28]. To this end, recall that the objective of problem
OCDC only depends on the aggregate load of each time
period. We introduce ancillary variable vt to denote the total
number of EVs in charging mode during time slot t. Then, we
have equality constraints as follows.

N∑
n=1

un,t = vt, ∀t ∈ T . (5)

Let Dt denote the feasible set of vt, namely, Dt = [0, vt] ∩
Z, where the upper bound vt = ∑M

m=1 min{cm,t,
∑

n∈Nm
In,t}

depends on the availability of the EVs, the power grid topology
and the distribution transformer capacities.

By (5), problem OCDC can be reformulated as

min
U,v

T∑
t=1

ft(r0vt + D(t) − L(t)),

s.t. (1), (2), (5),

un,t ∈ {0, 1}, ∀n ∈ N ,∀t ∈ T , (6)

where v = [v1, v2, . . . , vt, . . . , vT ]′, t ∈ T . A′ represents the
transpose of matrix A. Herein, the objective function is the
summation of single-variable convex functions ft(r0vt +D(t)−
L(t)) and hence separable convex.

Furthermore, total unimodularity is also an important prop-
erty to eliminate integer constraints without losing optimality.
Constraint coefficient matrix with totally unimodular property
defines the solution space as a polyhedron, whose vertices
are all integral. Thus, total unimodularity helps safely elimi-
nate integer requirement constraints if the optimal solutions are
known to be located on the extreme points of the polyhedron
(e.g., linear objective).

Theorem 1: The coefficient matrix of constraints (1), (2)

and (5) is totally unimodular.
Proof: Please refer to Appendix A.
Until now, we have shown that problem (6) has a separable

convex objective function and totally unimodular constraint
coefficient matrix. In general, the convex integer objective
function is difficult to tackle. However, leveraging the λ-
representation technique [29], a single-variable integer convex
function can be replaced by an equivalent LP, which is much
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easier to handle. Specifically, define a single-variable func-
tion ht(vt) = ft(r0vt + D(t) − L(t)), vt ∈ Dt, which can be
represented as,

ht(vt) = min
λt,j

∑
j∈Dt

ht(j)λt,j, (7a)

s.t.
∑
j∈Dt

jλt,j = vt, vt ∈ Dt (7b)

∑
j∈Dt

λt,j = 1, λt,j ≥ 0. (7c)

The λ-representation approximates the continuous func-
tion ht(·) with a piecewise-linear function defined by points
(vt, ht(vt)), vt ∈ Dt. Due to the convexity of ht(·), such approx-
imation will be an upper bound of ht(·) within interval [0, vt]
and equals ht(·) at the integer points in Dt. Given the inte-
grality constraints of problem (6), only the function values at
integral points will be counted. Thus, this λ-representation is
exactly equivalent to our original single-variable convex func-
tion ht(·) when the decision variable is restricted to be integer.
Substituting (7) into (6) and combining the two-level mini-
mization together, problem OCDC can be transformed into
an integer linear program

min
U,v,λ

T∑
t=1

∑
j∈Dt

ht(j)λt,j,

s.t. (1), (2), (5), (7b), (7c),

un,t ∈ {0, 1}, ∀n ∈ N ,∀t ∈ T , (8)

where new variables λ = [λ1,λ2, . . . ,λt, . . . ,λT ]′ and λt =
[λt,0, λt,1, . . . , λt,j, . . . , λt,vt ]

′, j ∈ Dt are introduced. By uti-
lizing the λ-representation and the properties of totally uni-
modular constraint coefficient matrix, it is proven in [29] that
after relaxing the integrality constraints, the optimal solutions
of (8) are guaranteed to be integral and are the same as
the optimal solutions of problem OCDC. Thus, the OCDC
problem can be solved efficiently and optimally via algo-
rithms designed to solve LP (e.g., the simplex or interior-points
algorithm).

Remark 2: We have so far discussed the single charging rate
case. The more general case of multiple charging rates can be
a natural extension of our proposed OCDC problem, and the
same technique presented above can be applied to solve the
extended OCDC problem if the multiple charging rates are
integer multiples of the lowest charging rate r0. However, for
the case that multiple discrete charging rates are arbitrarily
selected, the problem becomes far more complicated and thus
is left for our future work. Furthermore, our proposed methods
to solve the EV charging problem can be naturally extended to
coordinate the charging scheduling of residential-level battery
energy storage.

B. Smoothing the EV Charging Profiles

Let (U∗, v∗,λ∗) denote an optimal solution of problem (8).
As mentioned before, the optimality of problem OCDC is
characterized uniquely by v∗, which represents the optimal
aggregate number of EVs during each time period. Given v∗,

Algorithm 1 SOCDC Algorithm
Input: Distribution grid topology Nm, base load Dm and
capacity Cm for each bus m ∈ M. EV specification
(tin, tdn, En) for each EV n ∈ N .
Output: Charging profile Ub.
Solve problem (8) and obtain optimal solution (U∗, v∗).
Set k = 0, k(max) = 100. Initialize the charging profile by
having Ub = U(0) = U∗.
repeat
U(k+1) = arg minU∈U∗ Gl(U, U(k)).
Ub = arg minU∈{Ub,U(k+1)} G(U).
k = k + 1.
until convergence or k = k(max).

U∗ can be defined by a set of linear equations. Thus, prob-
lem SOCDC is described by a binary quadratic program as
follows.

min
U

G(U) = 1

2

N∑
n=1

T∑
t=0

(
un,t − un,t+1

)2
,

s.t. (1), (2),
N∑

n=1

un,t = v∗
t , ∀t ∈ T ,

un,t ∈ {0, 1}, ∀n ∈ N ,∀t ∈ T . (9)

Note that the coefficient matrix of problem (9) is a submatrix
of problem OCDC’s coefficient matrix and hence is totally
unimodular. However, the objective function of problem (9)

is not separable, which makes it inappropriate to solve in the
same way as we did in the last subsection. In fact, problem (9)

is proven to be NP-hard in the strong sense.
Theorem 2: Problem (9) is NP-hard in the strong sense.

There can be no polynomial time approximation algorithms
for problem (9) unless P=NP.

Proof: Please refer to Appendix B.
Thus, we turn to finding a simple heuristic algorithm which

can achieve reasonably good results within a proper time. Note
that the objective of problem (9) is only related to the total
number of on-off switchings regardless of their specific loca-
tions (i.e., which EV and at which time). Thus, randomly
allocating the limited charging capacity to competing EVs
with the same EV specification will not affect the perfor-
mance of problem (9). The basic idea of our algorithm is
to iteratively linearize the quadratic objective function and
efficiently search for a relatively smoother charging profile.
Specifically, we replace the objective function of problem (9)

with a linear function parameterized by the solutions from
previous iterations,

Gl
(

U, U(k)
)

=
N∑

n=1

T∑
t=1

α
(k)
n,t un,t,

where α
(k)
n,t = γ1u(k)

n,t−1 + γ2u(k)
n,t + γ3u(k)

n,t+1. Weighting fac-
tors γ1, γ2 and γ3 are chosen to satisfy γ3 < γ1 + γ2 (e.g.,
γ1 = −1, γ2 = −6, γ3 = −10). Such weighting factors are
valid because for any group of 1 with arbitrary length in vec-
tor un in each iteration, the weighting factor of the last 1 in
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TABLE I
ILLUSTRATING THE VALIDITY OF THE LINEARIZED OBJECTIVE

Fig. 5. Optimal aggregate load profiles for various EV penetrations. In the
case of 100% EV penetration, there are totally 1200 EVs in the distribution
grid in which 800 EVs charge at homes and 400 EVs charge at parking lots.

each group is always larger than the weighting factor of the 0
just before this group, which indicates that this 1-0 pair will be
inclined to exchange their location in the next iteration as long
as the corresponding constraint is not violated. Thus, during
each iteration, all the charging periods try to move one time
slot ahead, which will eventually combine the charging periods
together after the capacity constraints stop them from moving
forward. Table I illustrates several iterations of the charging
profile of EV n and its corresponding weighting factors, which
validate the argument above. Moreover, such linearized objec-
tive is separable. Thus, the computation load for each iteration
is equivalent to solving an LP.

We summarize our solution methodology for problems
OCDC and SOCDC in Algorithm SOCDC. Note that our
algorithm can achieve a rather smooth charging profile by
solving successive LPs within a certain number of itera-
tions, which is relatively efficient even when the input size
is large.

V. CASE STUDIES AND DISCUSSIONS

In this section, we evaluate the effectiveness of our proposed
algorithm from multiple perspectives. For ease of illustration,
we choose the flat load profile as our target load profile (i.e.,
L(t) = 0,∀t ∈ T ) and quadratic function to penalize any
deviation, which can result in a valley-filling profile. Our case

Fig. 6. Illustration of the effectiveness of our methods to prevent the deep
ramp risk for different EV penetrations.

Fig. 7. Aggregate total load profiles for four scheduling schemes.

studies consider a distribution grid with 100 residential buses
and one commercial bus. Each residential bus has a capacity
of 25 kVA and supports ten houses’ electricity consumption
while the commercial bus with 500 MVA capacity works for
one public parking lot which can accommodate at most 400
EVs. To model EVs’ uneven distribution over the residential
buses, 10% and 90% of 800 EVs are randomly distributed
in 20% and 60% of the residential buses respectively. The
remaining 20% of the buses have no EVs that are charged at
home. The hourly base load profile on each residential bus
is randomly selected from the daily power consumption of a
single home from July 1st to July 20th in the service area
of the Southern California Edison [30] and is scaled by the
number of houses attached to the bus (in our case, there are
10 houses attached to each bus). For the commercial bus, we
assume there is no base load as it supports EV charging only.
Based on [2], all the EVs are charged with single-phase level-2
charging rate of 3.3 kW.
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Fig. 8. Histogram frequency of normalized load on all the residential buses during the entire time horizon after applying different charging schemes.
(a) SOCDC. (b) SOCDC-N. (c) Greedy. (d) Greedy-N.

A. Performance of SOCDC Algorithm

We first verify the valley-filling property of our proposed
SOCDC algorithm. Without loss of generality, we assume
that our scheduling horizon is from 18:00 to 08:00 on the
next day, and during this period all the EVs are connected
and require 6 hours to be fully charged. Fig. 5 shows the
optimal aggregate load obtained from the SOCDC algorithm
for different EV penetration levels. It can be shown that
the aggregate load typically reveals a valley-filling property
except when the EV penetration is too low (5%) or too
high (100%). The reasons are as follows. In the low pene-
tration case, there are not enough EVs to fill the load valley
exactly even though all the EVs charge during the valley
period. As for the high penetration case, due to the uneven
EV distribution over buses, capacities of some buses are satu-
rated while some other buses still possess additional capacities
which cannot be further utilized. Therefore, the total load
during valley periods is lower than the load during peak
periods.

Though the SOCDC algorithm can smooth the total load
profile effectively within the scheduling horizon, the distribu-
tion grid may encounter a deep load ramp at the end of the
scheduling horizon (i.e., after 8 a.m.). In order to prevent this
potential risk, we can reshape the total load profile by the
modified objective function as follows

F(U) =
∑T

t=1
wtft

(
r0

∑N

n=1
un,t + D(t) − L(t)

)
,

where wt is the weighting factor at time t. Then, the following
two modifications can be applied to prevent the risk of deep
ramp: i) we choose a targeted load profile L(t) with a moderate
decreasing rate near the end of the time horizon. Then, by
tracking L(t), the final total load profile will not experience
such a deep ramp. ii) If we keep L(t) = 0, we can modify the

Fig. 9. Comparing the number of on-off switching before and after the
smoothing procedure.

penalty functions ft(·) or the weighting factors wt for different
t so that the penalty near the end of the time horizon is rather
large. Hence, the modified objective function can force the
EVs not to charge during the periods near the end of the time
horizon. Fig. 6 illustrates the effectiveness of our methods to
prevent the deep ramp risk. Here, we modify the objective
function by changing the weighing factor wt. In particular, we
set wt = 1 before 4 a.m. and wt increase linearly with t after
4 a.m. By adjusting the weighting factor wt, we can achieve
the load curves with different ramp rates at the end of the
scheduling horizon.

To evaluate the advantages of the SOCDC algorithm, we
compare the following charging schemes:

• SOCDC: Apply the SOCDC algorithm.
• SOCDC-N: Perform the SOCDC algorithm without

capacity constraints (2).
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Fig. 10. Aggregate load profiles for ROCDC and POCDC. (a) ROCDC for 20% and 50% EV penetrations. Plug-in time is uniformly distributed from
18:00 to 22:00. (b) ROCDC for 20% and 50% EV penetrations. Plug-in time is uniformly distributed from 18:00 to 02:00 next day. (c) POCDC for 20%
and 50% EV penetrations. Plug-in time is uniformly distributed from 18:00 to 02:00 next day.

• Greedy: Choose the EVs with larger energy demand
to be charged first while avoid violating the capacity
constraints.

• Greedy-N: Perform Greedy without capacity constraints.
Fig. 7 shows the total load profiles of different charg-
ing schemes. Compared with Greedy and Greedy-N, both
SOCDC and SOCDC-N can achieve flatter total load profiles
over the entire time horizon from 18:00 to 8:00. Moreover,
SOCDC-N obtains a flatter profile in terms of the valley-filling
behavior because the scheduling of SOCDC is restricted by
the capacity constraints and thus less flexible in controlling the
charging process. Fig. 8 depicts the distribution of the loads on
all the residential buses over the entire time horizon. Each load
sample represents the total load of one bus during one time
slot and is normalized by the capacity of that bus. It is shown
that when SOCDC-N and Greedy-N are applied, buses are
possible to be overloaded, which threatens the stability of the
distribution grid. In contrast, by applying SOCDC, the nor-
malized load on each bus is less than or equal to 1. Therefore,
SOCDC can strictly confine its load below the predetermined
capacity of each individual bus all the time. Furthermore, com-
pared with Greedy, SOCDC can reduce the number of heavily
loaded buses.

Next, we show the performance of our proposed heuristic
algorithm in minimizing the total number of on-off switchings.
To test the robustness of our algorithm, we generate multi-
ple scenarios for different EV penetrations. For each scenario,
EV plug-in time varies uniformly from 18:00 to 20:00. Fig. 9
shows the number of on-off switchings of all the EVs before
and after the smoothing procedure. In particular, the maxi-
mum, average and minimum of 100 simulations are illustrated
for each EV penetration. Note that the benchmark we use is
the total number of EVs participating in the charging schedul-
ing, which is the loosest lower bound of problem SOCDC.
Thus, the real gap between our result and the optimal value is
smaller than that shown in Fig. 9.

B. Illustration of Potential Real-time Implementations

Until now, we assume that we can predict the EV specifica-
tions exactly when applying the SOCDC algorithm. Towards

a more realistic setting, we discuss the SOCDC algorithm’s
potential for real-time implementations, in which the pre-
diction is unavailable or only available for a short time
period.

Typically, the EV coordinator can obtain an EV’s specifica-
tion once the EV gets connected. In the worst case that the EV
coordinator has no information about when EVs will get con-
nected in the future, an intuitive way to schedule the EV charg-
ing process is to perform the SOCDC algorithm over all the
connected EVs once a new EV gets connected. We name this
incremental implementation by ROCDC. Figs. 10 (a) and (b)
show the results of the offline SOCDC algorithm and the
online ROCDC method under different plug-in time uncer-
tainties and EV penetrations. We can observe that larger
uncertainty of EV arrival or larger EV penetration results
in larger deviation from the optimal solution when applying
ROCDC. For the case with low EV penetration and small
fluctuation in EV plug-in time, ROCDC can achieve results
pretty close to the optimal solution as shown by the red curves
in Fig. 10 (a).

ROCDC only considers the connected EVs. If the EV coor-
dinator can predict the EV specifications precisely in the near
future, the scheduling can be implemented in a way similar
to the model predictive control. It works as follows: at time t,
the EV coordinator estimates the information of EV arrivals
within the time interval [t, t + TP] in addition to the known
information of the connected EVs at time t, where TP is the
prediction time window. The SOCDC algorithm is performed
for both connected EVs and estimated arriving EVs but only
the scheduling solution at time t is applied. At time t + 1, the
previous procedure is repeated. We call this method POCDC.
Fig. 10 (c) shows the performance of POCDC. The aggregate
load is close to the optimal offline load profile with increase
of the prediction window TP. Thus, when the EV coordina-
tor has the ability to predict EV information, POCDC can
achieve a relatively satisfactory results for EV coordinated
charging. Furthermore, we observe that the sub-optimality of
the POCDC is mainly due to the underestimation of the EV
load in the future. Thus, to improve the performance of the
online algorithms, it is important to charge the connected EVs



SUN et al.: OPTIMAL SCHEDULING FOR EV CHARGING WITH DISCRETE CHARGING LEVELS IN DISTRIBUTION GRID 633

(i.e., the EVs that have already plugged in the power grid)
more aggressively in case the unexpected EV load in the future
will congest the power grid and lead to large load peaks.

VI. CONCLUSION

In this paper, we considered the EV coordinated discrete
charging problem by taking into account the grid capac-
ity constraints in distribution grid. The discrete optimization
problem was formulated as two successive problems OCDC
and SOCDC. Leveraging the properties of separable convex
functions and total unimodularity, the problem OCDC was
transformed into an equivalent LP, which could be solved
efficiently and optimally. We further proved that the problem
SOCDC is NP-hard and proposed a heuristic algorithm to min-
imize the on-off switchings for each EV’s charging profile.
Based on the simulation results, we demonstrated our algo-
rithm’s performance for various EV penetrations and observed
the importance of grid capacity constraints compared with
other scheduling methods. By applying our algorithm in incre-
mental and prediction-based manners, we showed that our
method could achieve reasonably good results under weak
uncertainty or in the low EV penetration cases even with-
out good predictions. Furthermore, connected EVs should be
charged more aggressively to improve the performance of
online algorithms in the cases with high EV arrival uncertainty
or high EV penetration.

APPENDIX A

PROOF OF THEOREM 1

Lemma 1: An I × J matrix A is totally unimodular if and
only if i) A has all its entries selected in {−1, 0,+1} and
ii) every row subset I can be divided into two disjoint sets,
I1 and I2, such that |∑i∈I1

aij −∑
i∈I2

aij| ≤ 1,∀1 ≤ j ≤ J,
where aij denotes the (i, j) element of matrix A [27].

First of all, it is clear that all the entries of the coeffi-
cient matrix are either 0, 1 or −1. Thus, the first condition
of Lemma 1 is satisfied. Note that the columns corresponding
to variable vt always satisfy the second condition of Lemma 1
no matter how the row subset is divided since for each column
involved vt, only one element equals to −1 and the rest are 0.
Thus, it is sufficient to prove that for any row subset I of the
coefficient matrix, it can be divided into two disjoint subsets,
I1 and I2, and |∑i∈I1

aij −∑
i∈I2

aij| ≤ 1,∀j ∈ J u, where
J u denotes the column subset associated with variables un,t.

Given I, the way to construct I1 and I2 to satisfy Lemma 1
can be as follows. Let I(1), I(2) and I(5) represent the subsets
of I corresponding to constraints (1), (2) and (5), respectively.

Step 1. Group I(5) into I1.
Step 2. If there exist rows in I(2) that are associated with

the same t as the rows in I(5), group these rows into I2 and
then group the rest of the rows of I(2) into I1.

Step 3. Group I(1) into I2.
Each row in I(5) has elements equal to 1 for the cor-

responding variable un,t with a fixed t and n ∈ N . After
step 1, the summation of the rows in I1 is a row vector
with all its entries being either 0 or 1. For the rows in

I(2), they only have elements equal to 1 for the correspond-
ing variable un,t with a fixed t and n ∈ Nm. According to
our grouping strategy in step 2, it can be guaranteed that
(
∑

i∈I1
aij − ∑

i∈I2
aij) ∈ {0, 1}, ∀j ∈ J u. Since the sum of

rows in I(1) also contains either 0 or 1, after performing step
3, it is guaranteed that (

∑
i∈I1

aij − ∑
i∈I2

aij) ∈ {−1, 0, 1},
∀j ∈ J u. Thus, the coefficient matrix is proved to be totally
unimodular.

APPENDIX B

PROOF OF THEOREM 2

Problem (9) can be represented in matrix form as
minu{ 1

2 u′Mu : Au ≤ b, u ∈ {0, 1}NT}, where A is totally
unimodular and b is an integer vector. M = Q′Q is semidefi-
nite, where Q is an N-block-diagonal matrix with each of its
diagonal blocks a T × T matrix of the form⎡

⎢⎢⎢⎢⎢⎢⎣

1 − 1 0 . . . 0

0 1 − 1
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 1 − 1
0 . . . 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Therefore, Q is totally unimodular and non-singular. Based
on [31, Th. 4.1], problem (9) is NP-hard in the strong sense.
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