
Mobile Netw Appl
DOI 10.1007/s11036-015-0645-9

Optimal Downlink Scheduling for Heterogeneous Traffic
Types in LTE-A Based on MDP and Chance-Constrained
Approaches

Samira Niafar1 ·Xiaoqi Tan1 ·Danny H.K. Tsang1

© Springer Science+Business Media New York 2015

Abstract The current mobile broadband market experi-
ences major growth in data demand and average revenue
loss. To remain profitable from the perspective of a ser-
vice provider (SP), one needs to maximize revenue as
much as possible by making subscribers satisfied within
the limited budget. On the other hand, traffic demands
are moving toward supporting the wide range of het-
erogeneous applications with different quality of service
(QoS) requirements. In this paper, we consider two related
packet scheduling problems, i.e., long-term and short-term
approaches in the 4th generation partnership project (3GPP)
long term evolution-advanced (LTE-A) system. In the long-
term approach, the long-term average revenue of SP subject
to the long-term QoS constraints for heterogeneous traf-
fic demands is optimized. The problem is first formulated
as a constrained Markov decision process (CMDP) prob-
lem, of which the optimal control policy is achieved by
utilizing the channel and queue information simultaneously.
Subsequently, in the short-term approach, we consider the
short-term revenue optimization problem which stochas-
tically guarantees the short-term QoS for heterogeneous
traffic demands through a set of chance constraints. To
make the proposed chance-constrained programming prob-
lem computationally tractable, we use the Bernstein approx-
imation technique to analytically approximate the chance
constraint as a convex conservative constraint. Finally, the
proposed packet scheduling schemes and solution methods
are validated via numerical simulations.
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1 Introduction

As mobile broadband traffic demand shifts from voice-
dominated to data-dominated traffic, the SP’s revenue is
not keeping pace with the dramatic increase in traffic vol-
ume [8]. In order to remain profitable, SPs are looking at
ways to reduce their costs and improve their revenues. On
the other hand, subscribers require SPs to ensure their QoS
for the wide range of heterogeneous services. To provoke
such a scheme to track the revenue rather than the demand,
while fulfilling the stringent QoS guarantees, one requires
an effective resource scheduling scheme. The 3GPP LTE-A,
as the fourth generation of cellular network mobile commu-
nication standard, promotes a flexible resource scheduling
by allowing SP’s desired algorithms to be developed. How-
ever, all the key parameters required to design a resource
scheduler such as all signalling and users’ QoS requirements
are specified in details in the 3GPP LTE-A standard [14].

In LTE-A, the base station (eNodeB) schedules units of
time-frequency resources known as resource blocks among
LTE users. It is trivial to show that SP can maximize its rev-
enue by allocating the resource blocks to the users which
make the best profit based on channel condition. However,
this resource allocation approach may suffer from the vio-
lations of the 3GPP LTE-A scheduling constraints and QoS
requirements as described in the following: First, although
orthogonal frequency division multiple access (OFDMA) as
the downlink radio access technology of the LTE-A system
allows multiple resource blocks with different data rates to
be assigned to a single user, 3GPP standard does not support

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s11036-015-0645-9-x&domain=pdf
mailto:sniafar@ust.hk


Mobile Netw Appl

multiple simultaneous data rates for a single user in order to
avoid excessive signaling overhead. Thus, to have a 3GPP
standard-compliant resource scheduler we select a common
modulation and coding scheme (MCS) over all resource
blocks assigned to a user in our scheduling policy (refer to
section 10.2 in [1]). This constraint is previously considered
in multiple related works such as [9] and [18], whereas the
formulated scheduling problems proved as NP-hard in these
works. Authors in [11] achieved the optimal solution for the
same scheduling scheme by proving the total-unimodularity
of the reformulated problem and solved it as an standard
linear programming problem. Second, the control policies
which are only adaptive to channel variations can not guar-
antee the delay requirements for the real life applications.
To fulfill the QoS requirement of the 3GPP LTE-A standard,
the control policy should be designed based on both chan-
nel condition and queue information of the users. By doing
so, we can associate the users’ traffic dynamics and channel
variations with the SP’s revenue. There are quite a number
of works that considered the channel and queue informa-
tion jointly and proposed a scheme for packet scheduling in
OFDMA systems such as maximum-largest weighted delay
(M-LWDF) [3], but most of them are not proper to use in
the presence of the heterogeneous traffic since they do not
provide bounded delay performance [4].

In this paper, an underlying information-theoretic prin-
ciple is combined with a queuing-theoretic approach to
achieve the guaranteed QoS for the users as well as the max-
imum revenue for the SP. We consider a pricing scheme
that charges proportionally as the usage increases based on
traffic type. The maximum achievable data rates by users
are used as the revenue incentive for the SP. Two math-
ematical scheduling schemes are proposed under two dif-
ferent approaches, i.e., the MDP approach and the chance-
constrained approach. Essentially, both proposed schedul-
ing approaches assign each resource block to the best user
and select the best corresponding MCS for each user while
maximizing the overall system performance (e.g., SP’s rev-
enue) and guaranteeing the QoS requirement for heteroge-
neous services. Other than the nature of two approaches
which achieve different objective goals, they are also differ-
ent in terms of the complexity, the time between the decision
epochs and the information required to make the decision.

Our first mathematical approach is based on constrained
Markov decision process (CMDP) which maximizes the
long-term average SP’s revenue subject to long-term aver-
age queue length constraint. For this problem, we assume
that channel state information (CSI) and queue state infor-
mation (QSI) are available through feedback channels at
the beginning of each decision epoch. The time between
the decision epochs is as equal as the period of the feed-
backed information. The Lagrangian dynamic program-
ming approach is used to convert the constrained MDP to

unconstrained MDP. The optimal control policy for uncon-
strained MDP is obtained by solving the well-known Bell-
man’s equation using relative value iteration method. Then,
using the concept of marginal delay cost, we show that the
optimal policy obtained for the unconstrained MDP is also
optimal for the CMDP. As our second approach, we propose
a short-term optimization which maximizes the expected
revenue and provides the short-term QoS provisioning for
heterogeneous traffic using a set of stochastic constraints,
e.g., chance constraints. Chance-constrained programming
is one of the major approaches to deal with random param-
eters in the optimization area. The sources of randomness
in our paper are the random arrival process and the random
channel fading gains in the OFDMA system. We assume
in the chance-constrained problem the probability distribu-
tions of the slow fading channel and the arrival process
are known. Instead, the instantaneous CSI feedback from
the users at each decision epoch is not required. The time
between the decision epoches are considered to be many
times of the decision epoch in the MDP approach, wherein
between the decision epoches the slow fading channel pro-
cess and the arrival process are still ergodic. To preserve the
convexity and reduce the complexity of chance-constrained
programming, we use Bernstein approximation [10] to
obtain a conservative and deterministic approximation of
the affine chance constraints.

The rest of the paper is organized as follows. Section 2
gives an overview of main LTE-A features followed by the
system model. The scheduling problems proposed CMDP
approach is formulated in Section 3. We propose the method
to solve the CMDP problem in Section 4. In Section 5,
the chance-constrained revenue optimization problem is
formulated and the solution is proposed using Bernstein
approximation. Section 6 presents the performance of our
scheduling schemes. Finally, Section 6 draws the conclu-
sions.

2 Model

In this section, the OFDMA downlink system model and
queueing model are outlined. The simplified architecture
of the LTE-A downlink packet scheduler in the eNodeB of
the LTE-A system is shown in Fig. 1. At the beginning of
each decision epoch, eNodeB receives CSI from the users
and captures QSI by observing the users’ buffer. The packet
scheduler in eNodeB uses this information to make a deci-
sion based on the scheduling policy and passes it to the radio
access unit. The technology to access the radio spectrum in
downlink is OFDMA, which divides the bandwidth into a
series of flat fading narrow bands [14]. The radio resource
divisions of the LTE-A SP in time-frequency domains are
shown in Fig. 2. One resource block corresponds to 180 kHz
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Fig. 1 Packet scheduling in the eNodeB of the LTE-A system

in the frequency domain and 0.5 ms in the time domain. The
minimum resource allocation unit is one scheduling block
which is comprised of two consecutive resource blocks
spanning a time duration of 1 ms known as transmit time
interval (TTI). The update of the CSI, QSI and also the
resource scheduling decision are carried out once every TTI.
Here, the terms TTI and time slot are used interchangeably.

2.1 Physical layer

Consider a downlink OFDMA multiuser LTE-A system, let
U , R, M and P be the sets of users, resource blocks, MCS
schemes and prices, respectively. DefineU = |U |,R = |R|,
M = |M| and P = |P|, where | · | represents the cardi-
nality of a set. The channel between the eNodeB and any
user i ∈ U is modeled as a frequency selective block fading
channel, assuming that each resource block channel con-
dition remains unchanged during a time interval of length
TTI. At each TTI n, every user i ∈ U measures the sig-
nal to noise ratio (SNR) of the reference signals transmitted

Fig. 2 Time-frequency resources in LTE-A

by the eNodeB over the channel, quantizes the SNR values
and reports a channel quality indicator (CQI) vector ci (n)

to the eNodeB containing the cij (n) values for all resource
blocks j ∈ R. Afterwards, eNodeB forms the CQI matrix
C(n) = [ci (n)] and selects suitable set of MCS indexes cor-
responding to the ci (n) to ensure a certain block error rate
target (typically < 10 %) is met while achieving the high-
est transmit block size. Based on the 3GPP LTE-A standard,
the scheduler should select a common MCS for each user
over all resource blocks assigned to it at each TTI (refer to
section 10.2 in [14]).

Denote x(n) = {xm
ij (n)} as the resource block and

MCS allocation strategy at TTI n, where xm
ij (n) = 1 rep-

resents that resource block j is assigned to user i with
MCS m at TTI n. Accordingly, denote rm

ij (n) as achiev-
able data rate when xm

ij (n) = 1. Further denote r(n) =
(r1(n), · · · , rU (n)) as the achievable data rate of the users
at TTI n, where ri(n) is

ri(n) =
∑

j∈R

∑

m∈M
rm
ij (n)xm

ij (n). (1)

Consider P(n) = {pij (n)} as the unit prices set for all
users i ∈ U over all resource blocks j ∈ R. The pricing
scheme assigns different costs per unit of usage for differ-
ent types of traffic and charges proportionately as the usage
increases [13]. Assuming that each user is associated with a
single type of traffic, pij can be expressed by

pij (n) = αirij (n), (2)

where αi is the constant coefficient to charge user i per
unit of data rate and rij (n) = ∑

m∈M rm
ij (n) is the amount

of used data rate units for user i over resource block j at
TTI n. Basically, rij (n) is used as the revenue incentive
for the SP. Denote extra auxiliary MCS assignment strat-
egy d = {dm

i (n)}, where dm
i (n) = 1 represents that user i

chooses MCS m at TTI n based on the scheduling policy.
We have the following widely-used assumption regarding
the channel gains:

Assumption 1 The sequence of the fading channel varia-
tions follows an ergodic discrete time Markov chain [16].
It is also assumed that channel states are exactly known (or
fully observed).

There is an overhead imposed by full channel acquisi-
tion over the uplink channel. MDP framework using par-
tially observed channel states is out of scope of our MDP
approach.
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2.2 Source model and queue dynamics

In this paper, we adopt a queuing model such that each user
has a queue in the eNodeB (see Fig. 1). Denote q(n) =
(q1(n), ..., qU (n)) to be the queue lengths of the users,
where qi(n) represents the number of bits in the i-th user’s
queue. Further denote a(n) = (a1(n), ..., aU (n)) to be the
stochastic incoming traffic within the n-th time interval,
where ai(n) and ai represent the number of arrival bits and
the average arrival rate to the i-th user’s queue, respectively.
We assume the packet length is fixed for different types of
traffic. We put the following assumption for the incoming
traffic:

Assumption 2 For all i and n, the random variables of the
incoming traffic possess finite mean and finite variances;
meanwhile, they are independent and identically distributed
(i.i.d) over the decision epochs.

It is just for simplicity of our problem formulation that we
assume i.i.d traffic arrival process. While, It is also possible
to assume that traffic arrival is a Markov chain at the cost of
further complexity.

In the n-th TTI, a batch of a(n) bits in the form of fixed-
length packets arrive, followed by the departure of r(n) bits.
We assume the incoming traffic a(n) are captured after the
packet scheduler’s decision at time n. The value of a(n)

is endogenous parameter, whereas r(n) is exogenous and
affected by the SP’s action. Hence, the evolution of the
queues can be written as

q(n + 1) = [q(n) − r(n)]+ + a(n), (3)

where [·]+ is a componentwise operator defined as
max{0, ·}. We neglect the finite buffer size for the queue
dynamics mentioned above.

3 Long-term revenue maximization problem under
the MDP approach

In this section, we formulate the SP’s revenue maximization
problem. Consider S(n) = {C(n), q(n)} to be the sys-
tem state space at TTI n, comprising the channel quality
information and buffer state information. A policy is sta-
tionary if the decision rule is independent of the decision
epochs. In our work, we assume a stationary and determin-
istic scheduling policy � = (�x, �d) which is a mapping
function from system state space s ∈ S to the set of resource
blocks and MCSs allocation action spaces, which are given
by �x(s) = {

xm
ij ∈ {0, 1}, ∀i ∈ U , j ∈ R, m ∈ M

}
and

�d(s) = {dm
i ∈ {0, 1}, ∀i ∈ U , m ∈ M

}
, respectively.

The policy � = (�x, �d) should satisfy the practi-
cal constraints required by 3GPP LTE-A standard for all s.

These constraints can be summarized as (i) each resource
block can be assigned to only one user, (ii) each user can
choose one MCS over all resource blocks assigned to it (iii)
for each user the MCS is assigned only over those resource
blocks assigned to the user, otherwise the related MCS indi-
cator is assigned a value of zero (iv) the decision variables
for resource blocks assignment and MCS assignment can
take only the value of zero or one. With these physical
constraints, the per stage constraint can be mathematically
modeled as

∑
i∈U

∑
m∈M xm

ij (n) ≤ 1, ∀j, n (4)
∑

m∈M dm
i (n) ≤ 1, ∀i, n (5)

xm
ij (n) ≤ dm

i (n), ∀i, j, m, n (6)

xm
ij (n), dm

i (n) ∈ {0, 1}, ∀i, j, m, n. (7)

We limit our policy space to unichain policies [5] and
[6]. Given a unichain policy �, the induced Markov chain
is ergodic and there exists a unique steady state distribu-
tion. Therefore, we have from the Little’s theorem that the
average delay of user i under policy � is given as

D
�

i = lim
N→∞

1

N

N−1∑

n=0

E
�[qi(n)]

ai

, (8)

where E
� is the expectation under the stationary policy

�. Within the LTE-A network, the QoS requirements of
heterogeneous services are classified to nine QoS class iden-
tifiers (QCI) based on their tolerable packet delay budgets
and packet error loss rates (refer to Table 2.1 in [14]). For
example web-browsing can tolerate delay up to 300 ms with
maximum 10−6 packet loss rate. To consider different delay
requirements associated with different QCIs, heterogeneous
queue thresholds β = {βi, ∀i} are assigned to users that
demand different services. For example, for the user which
requires a service with tighter delay budget, we assign
smaller β. To satisfy the long-term QoS requirements for
different types of traffic we establish the long-term queue
outage probability guarantee as follows:

lim sup
N→∞

1

N

N−1∑

n=0

E�[I (qi(n + 1) > βi)] ≤ εi, ∀i. (9)

where I (·) is the indicator function, which is equal to 1 if
the condition inside the bracket holds and 0, otherwise. εi ,
which we refer to as the desired queue outage probability, is
a small value representing the the maximum allowable loss
for the violation of the queue threshold of user i.

P[s′|s, �] =
P[s(n + 1) | s(n)={C(n), q(n)}, �(n)] =
P[C(n + 1) | C(n)] . P[q(n + 1)|{C(n), q(n)}, �(n)]. (10)
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Based on assumptions 1 and 2, the transition probabilities
among the states can be written as Eq. 10, which due to the
independence of incoming traffic among different users (10)
can be further compactly written as

P[s′|s, �] =
P[C(n + 1)|C(n)] · P[a(n)=q(n + 1)−[q(n)−r(n)]+] =
P[C(n + 1) | C(n)] ·

∏

i

P[ai(n)]. (11)

In our work, we are interested in finding the optimal
policy, denote by �∗, such that the long-term average
reward over an infinite time horizon is maximized subject to
the per-stage (instantaneous) resource allocation constraints
(4)-(7) and the queue outage probability constraint in Eq. 9.
Mathematically, the problem is given by

(P1): maximize
�

lim sup
N→∞

1

N

N−1∑

n=0

E�[
∑

i∈U

∑

j∈R
(pij (n)

∑

m∈M
xm
ij (n))]

subject to constraints (4) − (7) and (9)

The SP’s revenue is affected by the queue threshold value
of different users. When the delay requirement of a user is
more stringent (lower β), more resource blocks are seized
by the user regardless of its possible bad channel quality
over the seized resource blocks. This reduces the chance of
assigning those resource blocks to users with better channel
condition and incurs revenue loss for the SP.

Remark 1 Note that the optimal user scheduling prob-
lem with delay requirement (P1) is a constrained MDP in
essence, which is widely used to deal with dynamic and
multi-objective decision problems. Without constraint (9),
(P1) can be easily resolved using value iteration or pol-
icy iteration method [12]. However, it becomes technically
challenging since queue outage probability constraint in
Eq. 9 may couple all the sequential decisions in addition
to the per-stage resource constraints. In Section 4, we shall
introduce the concept of Marginal Delay Cost as Lagrange
multiplier, which can be proved to be efficient in solving
(P1) with optimality guarantee under some conditions.

4 Marginal delay cost and the optimal scheduling
policy

4.1 Marginal delay cost and optimality condition

In this section the optimal solution for (P1) is studied. We
define the marginal delay cost for user i, which is denoted

by λi , as the Lagrange multiplier for the delay constraint (9).
Consider the following problem:

(P2): maximize
�

lim sup
N→∞

1

N

N−1∑

n=0

E�
[∑

i∈U

∑

j∈R
pij (n)

∑

m∈M
xm
ij (n)

−
∑

i∈U
λi [I (qi(n + 1) > βi) − εi ]

]

subject to constraints (4) − (7) and λi ≥ 0 ∀i.

Let R(s(n), �) be the per stage reward that SP can
achieve by choosing resource block and MCS allocation
action under the policy � when the system state is s. Define
the reward function at stage n as

R(s(n), �) =
∑

i∈U

∑

j∈R
pij (n)

∑

m∈M
xm
ij (n)−

∑

i∈U
λi [I (qi(n+1) > βi)−εi ].

(12)

Note that the optimal user scheduling problem (P2) with
marginal delay cost λi is equivalent to the Lagrangian
function of problem (P1) after incorporating the queue out-
age probability constraint (9) into the objective function.
Furthermore, we have the following lemma to show the
relationship between (P1) and (P2).

Lemma 1 Let �∗ and λi be the optimal policy and the
marginal delay cost for problem (P2). If the queue outage
probability constraint (9) is strictly binding with policy �∗,
then the policy �∗ is also optimal for problem (P1) with λi

serving as the corresponding optimal Lagrange multiplier.

The proof can be followed from the subgradient method,
which is omitted in this paper for brevity. Note that if βi

is sufficiently large, such that the queue outage probability
constraint (9) for user i is slack at the optimum of problem
(P1), the value of λi = 0. This can be trivially understood
by that the user can tolerate large delay such that the SP
does not need to consider any delay cost. When βi is not suf-
ficiently large, the value of λi can be determined by using
the bisection method, which can iteratively reach the speci-
fied average delay βi . Denote �∗

λi
as the optimal scheduling

policy for a given Lagrangian multiplier λi . The queue out-
age probability for user i under the scheduling policy �∗

λi
is

given by:

Q
�∗

λi

i = lim sup
N→∞

1

N

N−1∑

n=0

E
�∗

λi [I (qi(n + 1) > βi)], ∀i. (13)

It was proved in [2] that Q
�∗

λi

i is a piecewise linear non-
increasing function of λi . We can find the optimal Lagrange
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multiplier λ∗
i through the following update:

λl+1
i = max(λl

i + γ l(Q

�∗
λl
i

i − εi), 0), (14)

where γ l
i = 1

l
and l is the iteration index. The convergence

to λ∗
i is ensured due to the fact that Q

�∗
λi

i is a piecewise
convex function of Lagrange multiplier λi . Later on in this
paper, we consider that the marginal delay cost is prede-
termined to reach a certain queue outage probability. By
doing so, the following two advantages facilitate exact per-
formance analysis and the practical implementation of this
scheduling policy:

– The existence of an optimal policy that is both deter-
ministic and stationary for Problem (P2) has already
been shown in [5], which significantly reduces the
implementation complexity.

– The marginal delay cost λi represents the delay sen-
sitivity of the traffic of user i. By using the fixed λi ,
we can evaluate how the delay sensitivity of user traf-
fic influences the optimal scheduling policy of the SP.
Moreover, we can analyze the impact of multiple users
with heterogeneous queue outage probabilities on the
optimal scheduling policy.

4.2 Optimal scheduling policy

The structure of our MDP problem can be expressed as
follows:

– State: S = {C,q}
– Action:

{
xm
ij ∈ {0, 1}}, {dm

i ∈ {0, 1}}
– Reward: R is given in Eq. 12.

– Transition probability matrix: P[s′|s, �] is given in
Eq. 11.

Per stage constraints in Eqs. 4-6 are applied to the action
space. The channel variations across the users provides the
opportunity for the SP to increase its revenue by using mul-
tiuser diversity gain. However, the SP should make sure that
it satisfies the desired queue outage probabilities of differ-
ent users. When the SP applies a stationary policy �, the
induced Markov chain is recurrent and the optimal long-
term average sum revenue is independent of the initial state.
Under the unichain policy assumption, there exists an opti-
mal control policy �∗ for the problem (P2), such that for
any state s ∈ S the following Bellman’s equation is satisfied
[12]:

J + V ∗(s) = max
�

{
R(s, �) +

∑

s′∈S
P[s′ | s,�]V (s′)

}
,∀s ∈ S (15)

where V ∗(s) is the optimal value function for state s and
R(s, �) is the reward function defined in Eq. 12. J is
the optimal reward per stage which shows the maximum
revenue subject to the given queue outage probability con-
straint. With the stationarity assumption, time index n is
eliminated. The Bellman’s equation can be derived numeri-
cally through Relative Value Iteration algorithm which can
be written as [12].

Vn(s
0) + Vn+1(s) = max

�

{
R(s, �) +

∑

s′∈S
P[s′ | s, �]Vn(s

′)
}

, ∀s ∈ S

(16)

where s0 is any fixed state. Note that in the proposed MDP
problem the desired queue outage probability for each user
is guaranteed in a long-term manner by Eq. 9. Besides, since
the MDP-based scheduling problem requires the instanta-
neous CSI to be reported by the users, there is a large
overhead over the uplink channel. In the next section, we
propose a novel chance-constrained based problem which
maximizes the short-term expected revenue while provid-
ing the stochastic short-term QoS guarantee. Moreover, this
approach performs the decision making regardless of the
instantaneous CSI.

5 Short-term revenue maximization problem
under the chance-constrained approach

In this section, we formulate the optimization problem of
the SP’s revenue based on stochastic chance constraint on
queue length of the users. Since the queue state of the users
vary in a slower time scale than the instantaneous channel
state of the users, we consider the slow fading channel, in
which the source of randomness in the SNR value is from
long-term channel variations, i.e., path loss and shadow-
ing effects. Denote t as the time window, in which within
that the slow fading channel process and arrival process are
considered to be ergodic. Based on slow adaptive channel
characteristic and packet arrival process, t ought to span the
length of many time slots n. Consider the channel gain gij

for user i at resource block j to follow a general proba-
bility density function (PDF) fgij

(ξ). The achievable data
rate rm

ij (n) for user i over resource block j at time n can be
expressed as

rm
ij (n) = W log2(1 + pgij

	mσ 2
) (17)

where σ 2 is power of additive white Gaussian noise as back-
ground noise,W is the bandwidth of a single resource block,
and 	m is the capacity gap for the bit error rate and MCS m.
The maximum supportable MCS by each user is determined
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according to channel condition using the rate adaptation
techniques.

The stochastic QoS guarantee for users with hetero-
geneous service classes can be expressed as a chance
constraint on queue length of the users as follows

Pr

⎧
⎨

⎩[qi(n) −
∑

j∈R

∑

m∈M
rm
ij (n)xm

ij (t)]+ + ai(n) > βi |qi(n)

⎫
⎬

⎭ � εi∀i, ∀n ∈ t.

(18)

where xm
ij (t) is the binary decision variable for the given

time window t . For the given queue backlog qi(n), Eq. 18
guarantees a bounded queue outage probability (less than εi)
which is the probability that for each user i during the time
window t the queue length to be beyond of its predefined
threshold βi . Now, we can model the revenue maximization
problem for each time window t as follows

(P3): maximize
x,d

∑

i∈U

∑

j∈R
E[pij (n)]

∑

m∈M
xm
ij

subject to constraint (18)
∑

i∈U

∑

m∈M
xm
ij ≤ 1, ∀j (19)

∑

m∈M
dm
i ≤ 1, ∀i (20)

xm
ij ≤ dm

i , ∀i, j, m (21)

xm
ij , dm

i ∈ {0, 1}, ∀i, j, m. (22)

where in E[pij (n)] the time average revenue over the
time window t is replaced by the ensemble average due to
ergodicity of the slow fading channel within the time win-
dow t . dm

i is the MCS decision variable for the given time
window t . The chance constraint (18) in (P3) makes the
optimization highly intractable due to difficulty of verify-
ing its convexity. In this work, Bernstein approximation [10]
is used to obtain a conservative convex approximation of
the affine chance constraint in Eq. 18. Bernstein approxima-
tion is a recent advance in the field of chance-constrained
programming that provides a tractable conservative deter-
ministic and convex approximation for the chance constraint
[17].

Proposition 2 The stochastic queue-constrained problem
in (P3) can be approximated by the deterministic and convex
optimization problem defined as

(P4): maximize
x,d

∑
i∈U

∑
j∈R E[pij (n)]∑m∈M xm

ij

subject to inf�i>0{�i(x, ζi) − �i log εi} ≤ 0, ∀i (23)

constraints (19) − (22)

where �i(x, ζi) = qi + �i

∑
j∈R

∑
m∈M �rm

ij
(−�−1

i xm
ij ) +

�i�ai
(�−1

i ) − βi , x = {xm
ij } and ζi = (ri , ai). Note that we

denote �rm
ij
and �ai

as the cumulant (log-moment) generat-
ing function of the data rate and the traffic arrival process,
respectively.

Proof See Appendix.

Proposition 3 The approximated chance constraints in
Eq. 23 are convex with respect to decision variable x.

Proof The function inside inf�>0(·) is positive weighted
summation of two functions with respect to x. Both of
these functions are convex, since the log-moment gen-
erating function is convex. The inf operator over � >

0 outside the discussed expression also preserves the
convexity.

According to [10], the chance constraint in Eq. 18 holds
if there exists a �i > 0 satisfying constraint (23) in (P4).
Note that Problem (P4) is a convex optimization problem
which has a convex subproblem that requires to minimize
the function �i(x, ζi) − �i log εi over �i . According to
Eq. 23,�i(x, ζi) is convex and differentiable over �i . There-
fore, it is always easy to obtain the minimum of function
�i(x, ζi) − �i log εi by setting the first derivative to be 0.
In the following lemma, the derivative of constraint (23) is
obtained.

Lemma 4 The first derivative of �i = �i(x, ζi) − �i log εi

with respect to �i can be written as Eq. 24.

d�i

d�i

=
∑

j∈R

∑

m∈M
�rm

ij
(−�−1

i xm
ij ) + �ai

(�−1
i ) −

āi exp( 1
�i

)

�i ln(10)
− log(εi )

+�i

∑

j∈R

∑

m∈M

log
∫ ∞
0 ln(1 + pξ

	mσ 2 )
1+ −Wxm

ij
�i ln(2) (

Wxm
ij

μi�
2
i ln(2)

) exp(− ξ
μi

)dξ

ln(10)
∫ ∞
0 (1 + pξ

	mσ 2 )

Wxm
ij

�i ln(2) 1
μi

exp(− ξ
μi

)dξ

.

(24)

We can determine the feasibility of the given x through find-
ing the optimal solution of Eq. 23, i.e., ��

i using Lemma 4.
If ��

i > 0 and �� < 0, then constraint (23) is feasible for
the given x.

6 Performance evaluation

In this section, the performance bound of the proposed
scheduling problems, i.e. the MDP and the chance-
constrained approaches are evaluated in terms of SP’s
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Table 1 Implementation parameters

Parameter Value

Radius of cell 250m

Number of users 3

Traffic model Backlogged traffic model

Path loss 58.1 + 37.6 log10(dkm)

Lognormal shadowing N (0, 8db)

Base stations TX power 30 Watts

Thermal noise power 1 Watt

Total no. of RBs 6

CQI report period 1 ms

W 180 Hz

Frequency granularity for CQI One RB

ARQ process Zero transmission attempt

TTI 1 ms

time window t 200 ms

revenue and queue outage probability for LTE-A down-
link system with heterogeneous traffic types. The proposed
schemes are implemented in MATLAB. We assume a single
hexagonal cell, whereas users do not leave it within the sim-
ulation. The transmission power is 30 Watts and the power
allocation across the RBs is homogeneous. For the MDP
approach, we utilize the 3GPP typical urban channel model
[1] to generate the required SNR values and accordingly,
create the CQI state space for our model. Without loss of
generality, we assume the frequency granularity of the CQI
measurement to be one RB and the period of the CQI report-
ing to one TTI. Then, the maximum supportable MCS for
each user over each resource block is obtained based on a
mapping from CQI reports to ensure a block error rate tar-
get less than 10 %. For the chance-constrained approach,
no feedback scheme is considered. The slow fading chan-
nel characteristics for the chance-constrained approach are
given in Table 1. The small-scale channel fading is assumed
to be Rayleigh fading distributed. Three MCS levels are
available for transmission. The minimum required SNR to
determine the maximum supportableMCS level is presented
in Table 2. The decision epochs for the MDP-approach are

Table 2 Minimum SNR required for different MCSs

MCS level Modulation Coding Minimum SNR (db)

1 BPSK 1/2 3.0

2 QPSK 3/4 8.0

3 64QAM 3/4 13.5

set to be equal to the same time duration of the CQI reports,
e.g. n = 1ms. For the chance-constrained approach the deci-
sion epochs are each t = 200ms which is 200 times of
the MDP-approach decision epochs. The simulation settings
used in our implementation are summarized in Table 1. The
total number of users is considered to be 3, unless otherwise
noted. The small sized network is opted to avoid creating
of a large dimension state space in the MDP approach. For
the chance-constrained approach there is no restriction to
increase the number of the users, since it is solved in poly-
nomial time with respect to the size of users, resource blocks
and MCSs.

The network includes maximum of three users which
can be grouped into two classes, i.e., Class I and Class II.
These two classes are heterogeneous in terms of arrival
rates, queue thresholds (delay requirements) and queue
outage probabilities. Class I and class II are characte-
rized by 3-tuple of (ā, β, ε) = {(0.1 pkts/TTI, 120kbits,
0.05), (0.2 pkts/TTI, 50 kbits, 0.005)}, unless otherwise
noted. The packets arrive at random according to the
Poisson process. A user from class I represents a less delay-
sensitive user, while a user from class II represents a user
with more stringent delay requirements. Without loss of
generality, let’s assume SP acquires half unit of currency
(0.5 USD) for every 1 kbits of class I traffic and one unit
of currency (1 USD) for every 1 kbits of class II transmit-
ted data. In the following subsections, the results for the
MDP-approach and the chance-constrained approach are
presented.

6.1 Performance evaluation for the MDP approach
problem

In the first test, the SP’s revenue is evaluated for differ-
ent combinations of users of different classes. The results
presented in Table 3 show that generally by increasing
the number of users, e.g., compare row 1 against other
rows, the system achieves higher revenue. However, the
improvement in revenue is less when a user with more strin-
gent delay requirement is added to the system, e.g. row
3 achieves less revenue than row 2. We also compare the
SP’s revenue for the case of three users of class I with
the case of three users of class II. As it is shown in rows
3 and 6 in Table 3, SP’s revenue is higher when users
have more relaxed desired queue outage probability in the
system.

The queue outage probabilities for different traffic mix
are compared in Table 4. The result in row 1 shows a zero
outage probability when there is a single class I user in
the system. When the number of users with stringent delay
requirement increases, it results in higher queue outage
probability as shown in rows 2 and 3.
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Table 3 SP’s revenue for different numbers of users

Number of the users Average total

(class I, class II) SP’s revenue (USD)

1 (1, 0) 5.1875

2 (2, 0) 8.5417

3 (3, 0) 10.3594

4 (2, 1) 8.918

5 (0, 2) 7.593

6 (0, 3) 8.0218

Next, we examine the revenue under different channel
qualities for two classes of users. The channel quality of the
users over all the states S is quantized to 5 levels, in which
channel quality 5 is the best. The average total revenues over
different channel quality levels are compared when there
are case1: (1,1), case2: (2,0) and case3: (0,2) number of
class I and class II users, respectively. The results in Fig. 3
show that when the channel condition improves, SP’s rev-
enue increases as well. However, the improvement in the
revenue is higher when delay requirement of the users is less
stringent.

6.2 Performance evaluation for the chance-constrained
approach problem

In this part, we investigate the performance of the chance-
constrained problem in (P4) using the parameter settings
stated in the beginning of this section. Each packet size is
100 bits for both service classes. We suppose the path-loss
and shadowing do not vary within the decision epoch of
t = 200ms. Our scheduling scheme is evaluated using the
Monte-Carlo based simulation. We conducted the experi-
ments over 100 independent windows of length t each.

Denote Ai as the required available space of a queue,
which is obtained as the difference of the queue threshold
and the queue state (i.e., Ai = βi −qi, ∀i). In our first set of
evaluations for the chance-constrained based problem, we
test the effect of arrival rates on the feasibility set defined
by constraint (23) for two cases: when constraint (23) (i)
imposes the feasibility set of (P4) to be empty. (ii) does not

Table 4 Queue outage probability for different numbers of users

Number of the users Queue outage probabilities

(class I, class II) (class I, class II)

1 (1, 0) (0, −)

2 (2, 0) (0.04, −)

3 (0, 2) (−, 0.0081)

4 (2, 1) (0.0521, 0.0081)
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Fig. 3 Average total revenue of the SP for different channel qualities

shrink the feasibility set of (P4). In the former one, Ai rep-
resents the minimum required available space of the queues
or, in other words, the maximum queue length of the users
that would trigger packet drop due to queue outage. While in
the latter one, Ai represents the minimum required available
space of the queues or, in other words, the maximum allow-
able queue length of the users, that satisfies constraint (23)
without reducing the feasibility set. We have evaluated Ai

under a simple scenario where user 1, user 2 and user 3 are
associated with class I, class II and class II, respectively. In
Fig. 4, the minimum A2 value for case (i) is found exhaus-
tively when only user 2’s queue is granted to be tuned.
While in Fig. 5, the minimum required A1, A2 and A3 val-
ues for case (ii) are exhaustively obtained when queues of
user 1 and user 2 are tuned. Different colors represent the
minimum required available space for three users.

We now compare the average revenue achieved by the
chance-constrained short-term scheduling problem in (P4)
against that of an instantaneous revenue maximization
scheduling, in which resource blocks and MCS are assigned
each 1ms under zero queue outage probability. In instanta-
neous scheduling problem under zero queue outage proba-
bility, the size of feasibility set is affected by two factors:
(i) at each decision epoch, the scheduling decision needs to
ensure the zero queue outage probability for the subsequent
time slot (1ms), instead of ensuring a desired queue out-
age probability for t = 200ms. This factor expands the set
of feasible solutions. (ii) since the queue outage probability
is zero in instantaneous scheduling problem, the schedul-
ing decision should 100 % guarantee the queue length of
all users is not beyond the their predefined thresholds. This
factor shrinks the set of feasible solutions. Figure 6 depicts
the accumulated revenue for instantaneous scheduling prob-
lem under zero queue outage probability compared to the
average revenue for (P4) within 2000ms. As expected, the
instantaneous scheduling achieves relatively better revenue
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ā1
ā2
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(on average 33 %) compared to the short term scheduling
in (P4). Considering the parameter setting that each short
term scheduling epoch spans the length of 200 instantaneous
decision epochs, the control signalling overhead and com-
putational complexity for short term scheduling are 1/200
of that for instantaneous scheduling problem, trading off
33 % of average revenue for it seems reasonable.

In Fig. 7, we measure the queue outage probability which
is defined before as the probability that queue length for
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users i is beyond its predefined threshold βi . At each time
window t , the slow fading channel parameter μi is gener-
ated based on given model in Table 1. The users’ locations
are generated using Poisson point process and two posi-
tions are picked up as locations of two users to obtain dkm

for the path-loss modelling. User 1 and user 2 are associ-
ated with class I and class II, respectively. As it is shown
in Fig. 7, the queue outage probabilities for both classes are
always smaller than the their desired queue outage prob-
abilities. The reason is the conservative approximation of
the chance constraint using Bernstein approximation. The
space between the obtained queue outage probabilities and
the desired queue outage probabilities can be reduced by
setting the predefined thresholds to larger values than the
desired ones. To illustrate the effect of desired queue out-
age probabilities, we evaluate the optimal objective value in
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Fig. 7 Queue outage probabilities over 100 time windows t
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(P4) for ε = [0.05, 0.005] and ε = [0.1, 0.005] along the
time domain, in Fig. 8. ε is the maximum allowable queue
outage probability that still ensures the queue outage prob-
ability lower than users’ desired queue outage probability,
i.e., ε. (P4) achieves a higher revenue by allowing the upper
bound of the queue outage probability to be large, which
means less stringent delay constraints for the users. Indeed,
by comparing the averaged obtained revenues under ε and
ε in Fig. 8, we observe that the latter one achieves 15.86 %
less revenue in comparison to the former one.

7 Concluding remarks

In this paper, we proposed two scheduling schemes which
utilize the MDP and the chance-constrained optimizations,
to maximize the long-term and short-term LTE-A SP’s rev-
enues subject to the long-term and short-term heterogeneous
QoS constraints of the users, respectively, as well as satisfy-
ing the resource scheduling constraints of the LTE-A system
according to the 3GPP LTE-A standard. Other than opti-
mizing different time-scale objectives, the two approach are
also different in terms of the complexity, the time between
the decision epochs and the information required to make
the decision. The key contribution in the short-term schedul-
ing is to use the Bernstein approximation to transform the
chance constraint to a convex, deterministic and computa-
tionally tractable constraint so that large-sized problems can
be solved.

Appendix

Proof of proposition 2

To apply the Bernstein approximation for the constraint in
Eq. 18, based on our commonly used assumption of back-
logged traffic model we can omit the [·]+ operator form the
constraint. In the backlogged traffic model, as the name sug-
gests, each user has always packet to transmit. Accordingly,
the inequality qi(n)−∑

j∈R
∑

m∈M rm
ij (n)xm

ij +ai(n) > βi

can be equivalently expressed as

Fi(x, ζi) > 0, (25)

where ζi = (ri , ai) and

Fi(x, ζi) �qi(n) −
∑

j∈R

∑

m∈M
rm
ij (n)xm

ij+ai(n) − βi. (26)

Fi(x, ζi) is in the form of affine chance constraint which
involves linear form of the random variables ζi = (ri , ai).
Based on the Bernstein approximation, constraint (18) can
be approximated by

inf
�i>0

{�i(x, ζi) − �i log εi} ≤ 0, ∀i (27)

where

�i(x, ζi) = �i logE[exp(�−1
i (Fi(x, ζi))]

= qi +�i

∑

j∈R

∑

m∈M
�rm

ij
(−�−1

i xm
ij ) + �i�ai

(�−1
i ) − βi, (28)

where �rm
ij
and �ai

are the cumulant (log-moment) generat-
ing function of the data rate and arrival process, respectively.

In the sequel, we derive the cumulant generating function
of the random variable rm

ij , which is a function of the chan-
nel gain random variable. The moment generating function
(MGF) of r(γ m

ij ) = W log(1 + γ m
ij ), where γ m

ij = pgij

	mσ 2 , is
given in [7] as follows

Mrm
ij
(y) = E[exp(−yr(γ m

ij ))] = 1+
∫ +∞

0
Q(ln(2)y, ξ)M

(1)
γ m
ij

(ξ)dξ,

(29)

where Q(a, u) = �(a, u)/�(a) is the regularized Gamma
function1 and M

(1)
γ m
ij

(·) is the first derivative of the MGF

of γ m
ij . Mγ m

ij
(·) is known in closed-form for many fading

distributions [15]. Without loss of generality, consider the
channel gain as an exponentially distributed random vari-
able with PDF given by fgij

(ξ) = 1
μi

exp(− ξ
μi

), where μi

is the mean slow fading channel gain for user i and can be

1�(a, u) = ∫ ∞
u

ta−1e−tdt and �(a) = ∫ ∞
0 ta−1e−tdt
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characterized based on path-loss and shadowing effects. In
practice, the difference between different resource blocks is
indistinguishable for slow fading channel parameter μi . The
value of μi oughts to be updated at the beginning of each
time window t . Hence, the cumulant generating function of
the data rate can be achieved as

�rm
ij
(y) = log

[∫ ∞

0
(1 + pξ

	mσ 2
)

Wy
ln 2 .

1

μi

exp(− ξ

μi

)dξ

]
. (30)

To calculate the cumulant generating function of the
arrival process, e.g., �ai

, without loss of generality consider
the arrival process for the traffic of the user i follows Pois-

son distribution with parameter as fai
(k) = āk

i e−āi

k! , where
āi represents the average rate. �ai

can be computed as

�ai
(y) = logE[eyai ] = log(eāi (e

y−1)) = āi (e
y − 1)

ln 10
. (31)
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