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A B S T R A C T

The cooperation of multiple networked microgrids (MGs) can alleviate the mismatch problem between dis-
tributed generation and demand and reduce the overall cost of the power system. Energy management with
direct energy exchange among MGs is a promising approach for improving energy efficiency. However, existing
methods on microgrid cooperation usually overlook the underlying distribution network with operating con-
straints (e.g., voltage tolerance and power flow constraints). Hence the results may not be applicable to actual
systems. This paper studies the energy management problem of multiple MGs that are interconnected by both
the direct current (DC) energy exchange network and the alternating current (AC) traditional distribution net-
works. In our problem, each MG is equipped with renewable energy generators as well as distributed storage
devices. In order to handle the non-convex power flow constraints, we exploit the recent results of the exact
optimal power flow (OPF) relaxation method which can equivalently transform the original non-convex problem
into a second-order cone programming problem and efficiently determine the optimal solution successfully. The
objective of our problem is to minimize the overall energy cost in a distribution network consisting of multiple
MGs, with the practical operating constraints (e.g., power balance and the battery’s operational constraints)
explicitly incorporated. Considering the privacy and scalability, we propose a distributed algorithm with con-
vergence assurance based on the alternating direction method of multipliers (ADMM). We also implement our
method based on the model predictive control (MPC) approach in order to handle the forecasting errors of the
renewable energy generation. Simulations are made for different MG exchange topologies on three radial dis-
tribution network testbeds. Numerical results demonstrate that certain topologies are more favorable than
others, and the cooperation strategy for the energy exchange is significantly affected by the MGs’ locations in the
distribution network.

1. Introduction

1.1. Motivation and Methodology

Microgrids (MGs) are localized grids which accommodate a variety
of distributed energy resources (DERs) and different types of energy
users. They are believed to be a promising paradigm that can improve
the utilization of DERs and also users’ benefits [1]. However, in order to
ensure the stability and reliability of MGs, many tough problems need
to be resolved, among which, the mismatch between the distributed
generations and loads due to the intermittent nature of DERs (e.g.,
photovoltaic (PV) generators and wind turbines (WT)) is a key issue and
draws lots of attention. In order to handle this, several approaches can
be employed.

One solution is to take advantage of distributed storage (DS) devices

(e.g., batteries), which however suffer from two drawbacks: a huge
capital investment increases dramatically with DS capacities, and sig-
nificant energy transfer loss occurs due to the inefficiency of charging
and discharging processes. Therefore, relying solely on DS units is not
enough. Another promising solution is the direct energy exchange
among neighboring and cooperative MGs by dedicated energy exchange
network (denoted as EEN hereinafter). An EEN is composed of direct
power lines connecting a cluster of geographically correlated MGs,
enabling energy sharing and trading among them [2]. By exploiting the
diversified distributed generation and consumption profiles, EENs have
the following advantages: first, reduced power transmission loss thanks
to the short distance between MGs, and second, lower energy bills for
the MGs because the internal energy trading price is higher than the
buyback price, while lower than the selling price of the utility company
[3,4]. Thanks to these advantages, MGs will have enough incentives to
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cooperate with each other in order to minimize the overall cost of the
system [5] and benefit from the energy sharing via the EEN. In fact, the
similar concept of the peer-to-peer direct current (DC) EEN among MGs
has been proposed in [6,7], and this DC EEN is in parallel to the un-
derlying AC distribution network. Accordingly, we add the structured
relationship between these two networks in Fig. 1. From the figure, we
can see that each MG is connected to the traditional AC distribution
network and at the same time, they are interconnected by a dedicated
DC EEN. The EEN enables the direct energy exchange among MGs and
the connection to the distribution network can ensure the balance be-
tween supply and demand for each MG.

The coordinated energy management of networked MGs with en-
ergy sharing has been warmly discussed in the literature [8,5,9–15].
Gregoratti et al. [5] developed a distributed convex optimization fra-
mework for energy trading between islanded MGs, where all MGs co-
operate with one another to minimize the total cost of the system.
Lakshminarayana et al. [8] analyzed the tradeoff between the use of
storage and the cooperation by energy sharing among DG resources
with the objective of minimizing the time average cost of the energy
exchange within the grid. A problem in these prior works is that the
transmission loss incurred by the energy sharing is either ignored
[8,5,9–11] or oversimplified by a linear model [12,13], both of which

are not realistic in practice. In contrast to these, some recent works
considered the energy sharing problem of MGs with a more accurate
loss model [14,15], by using a quadratic function of the energy trans-
ferred. Another issue in [8,5,9–15] is that their models were proposed
in an abstract way with the underlying distribution networks neglected.
In fact, the MGs, if not operated in an islanded mode such as those in
remote areas, are connected with the main grid via the points of

Nomenclature

Abbreviations

(·)l, (·)c local, consensus variables
cp, np coupling, non-coupling variables
AC alternative current
ADMM alternating direction method of multipliers
DC direct current
DER distributed energy resource
DS distributed storage
EEN energy exchange network
LAO local are operator
MG microgrid
MPC model predictive control
OPF optimal power flow
PCC point of common coupling
PV photovoltaic
TOU time-of-use
WT wind turbines

Functions

C (·)n t
ES
, battery’s operational cost

C (·)t battery’s operational cost
C (·)t

P total energy purchase cost

Index

i index of bus (node)
i0 index of parent bus of i
in bus index of MGs in distribution networks
k index of iteration
m, n index of MGs
t index of time

Parameters

Ωn
c , Ωn

l constraint sets for consensus and local variables for MGs
Ωlao

c , Ωlao
l constraint sets for consensus and local variables for LAO

Δ duration of a time slot

ηc, ηd charging and discharging efficiencies
E branch set
K node set
M set of MGs
N index set of MGs
T tree representation of distribution networks
W index set of MGs in distribution networks
ω weighting factors
γn , γn upper and lower bounds for storage level at the end of the

time horizon
ESn , ESn upper and lower bounds of energy storage
Pn t

ESC
, , Pn t

ESD
, charging and discharging power limits

Pn t
inj
, power injection limits

vi t, , vi t, upper and lower bounds of squared magnitude of bus
voltage

H total number of time slots
N number of microgrids
Ni set of the children buses
Pn t

RE
, renewable energy generation

PRt TOU price
rm n, line resistance between MGm and MGn
Si t

L
, , Pi t

L
, , Qi t

L
, apparent, active and reactive loads

Um n, sending end transmission voltage between MGm and MGn
zi, ri, xi impedance, resistance and reactance of branch
K number of branches

Variables

Xt
(·) vector of decision variables

Xcp t,
(·) , Xnp t,

(·) vector of coupling, non-coupling variables for LAO/MGs
ESn t, remaining energy in the battery
Ii t, branch current
li t, squared magnitude of branch current
Pn t

ESC
, , Pn t

ESD
, charging and discharging power

Si t
A
, , Pi t

A
, , Qi t

A
, apparent, active and reactive power drawn from the
distribution network

Si t, , Pi t, , Qi t, apparent, active and reactive power flows
Tm n t, , power transfer from MGm to MGn
Vi t, complex bus voltage
vi t, squared magnitude of bus voltage

Fig. 1. DC direct energy exchange network of multiple MGs in parallel with the AC dis-
tribution network.

T. Liu et al. Electrical Power and Energy Systems 96 (2018) 335–346

336



common coupling (PCC) through the distribution networks. For this
reason, the associated power flow constraints and other system opera-
tional constraints [16–18] of the distribution networks should be taken
into account such that the obtained scheme can be applicable to actual
systems and truly benefits users with the stability [19] and reliability of
the system ensured.

In this paper, motivated by the above considerations, we present a
model for the energy management of cooperative MGs with energy
sharing under distribution networks [20]. The context of our problem is
the day-ahead market with a time-of-use (TOU) pricing mechanism. In
our problem, there is a local area operator (LAO) in charge of con-
structing the EEN, for the purpose of reducing the system power loss
and improving the energy efficiency. Moreover, the MGs are equipped
with DERs (i.e., solar panels and wind turbines) and DS units (i.e.,
batteries). In this way, the MGs can fulfill their demands by not only
their own distributed resources but also the supply from the EEN and
the main grid. The objective of our problem is to minimize the overall
system cost, which includes: (i) the money paid for the power fed into
the network, (ii) the power loss in the distribution network, (iii) the
direct energy exchange cost, and (iv) the battery’s operational cost,
while satisfying all the corresponding constraints, such as system op-
erational constraints on power flow and voltage, and the batteries’
operational constraints.

Our problem is formulated as a non-convex optimization problem
since the resistive power losses in the distribution network are con-
sidered in an alternative current (AC) power flow model, and thus, an
exact solution may be too complex to compute [5]. To handle the non-
convex optimal power flow (OPF) problem more efficiently, in this
paper we exploit the recent results of the exact OPF relaxation method
from [21]. In particular, this method matches the property of our model
well, thus enabling us to equivalently transform the original non-
convex problem into a second-order cone programming problem and
efficiently determine the optimal solution successfully (without suf-
fering from any relaxation loss).

To solve the energy management problems of MGs, many cen-
tralized solutions have been used [9,10,12]. However, due to some
disadvantages (e.g., poor scalability and privacy concerns) of the cen-
tralized solutions, distributed methods are more desirable [22]. For this
reason, we develop a distributed algorithm to solve our problem based
on the alternating direction method of multipliers (ADMM) [5,23] by
leveraging the specific structure of our formulation, such that the MGs
and LAO only need to communicate with their direct neighbors and
hence the communication overhead can be quite low. Moreover, the
convergence of the algorithm is assured.

We apply our model on three radial distribution systems (34-bus,
69-bus and 119-bus) and perform extensive numerical tests.
Specifically, the fast convergence rate of our proposed algorithm is
demonstrated with appropriate chosen parameters. Furthermore, the
results show that different MGs can cooperate with each other ac-
cording to their distinct and/or complementary consumption profiles to
minimize the total cost of the system. In addition, simulations are
conducted for different EEN topologies, which show that, depending on
the relative positions of MGs in the distribution network, some specific
EEN topologies may be more advantageous. Moreover, considering the
uncertainty of the renewable energy input, we also implement our
method based on the model predictive control (MPC) approach in order
to handle the forecasting errors of the renewable energy generation.
The results show that with estimation errors, performance loss of our
method is still acceptable.

1.2. Related works

There are several works in the literature that have studied the in-
teraction of multiple MGs with the distribution networks [17,24–29]. In
[17,24], the authors propose a control strategy for the coordinated
operation of networked microgrids (MGs) in a distribution system. They

formulate the problem as a stochastic bi-level optimization problem in
which the upper level problem is solved by the distribution operator in
order to guarantee the operational constraints while the lower level
problem is to minimize the operation costs of MGs. In [25–27], a bi-
level optimal operation model for distribution networks with grid-
connected MGs have been presented. The upper-level model determines
the optimal dispatch of the distribution network to achieve its power
loss reduction and voltage profile improvement, while the lower-level
model determines the optimal operation strategy of distributed gen-
erators in MGs considering the utilization of renewable power. How-
ever, in [25], although the operation of multiple grid-connected MGs
are considered, only the interaction between the distribution network
and MGs is studied without considering any power exchange among
MGs. By contrast, in [26,27], the cooperative interaction among MGs
with expanded energy storage systems are taken into account in addi-
tion to the interaction with the distribution network. Specifically, the
cooperation among MGs is modeled by an interactive energy game
matrix based on priority-based game theory to take full advantage of
the remaining dispatchable capacity in energy storage systems and
distributed generators. In [26], the impact of the large integration of
renewable energy resources is considered and analyzed. Moreover, the
authors in [27] introduce the responsive reserve of distributed gen-
erators to the model to improve the system operation. Additionally, the
authors in [28] propose an optimal energy scheduling framework for
the energy exchange among multiple microgrids while considering the
security constraints. In their framework, there are two layers: a dis-
tributed network layer which solves the OPF problem and a market
layer which coordinates the energy transaction among multiple MGs.
Furthermore, in [29], a distributed algorithm for the energy manage-
ment of networked MGs based on the on-line alternating direction
method of multipliers algorithm is proposed. Their objective is to co-
ordinate the power scheduling of various components in the MGs while
satisfying the underlying power network operation constraints.

Compared with our work, there are several issues in these related
works. The most remarkable one is that although the problems in those
literature have considered networked MGs with a distribution system,
there is no direct energy exchange network among MGs. Specifically,
they only allow the MGs to exchange energy through the distribution
network. In contrast, in our work both the DC EEN as well as the in-
teraction between the MGs and the distribution network are taken into
account. Therefore, the energy management for the coordination be-
tween the EEN and the traditional distribution networks is studied in
our work, which is one of our key contributions. In addition, although
the similar concept of the peer-to-peer DC energy exchange network
among MGs has been proposed in [6,7], the detailed energy manage-
ment problem involving these two networks has not been studied.
Hence, our work tries to make the first attempt to fill this gap in the
literature.

Furthermore, the problem formulation in our work is more practical
in several aspects when compared to those works in the literature. For
example, in [17,24,29], linearized power flow equations for distribu-
tion networks are used, while in our work, an AC power flow model has
been adopted which is more accurate. Moreover, in [17,24,28,29], the
DS devices are not considered, while our model involves DS devices
because they are becoming more and more important with the in-
creasing penetration of renewable energy resources.

In addition, although in [24,28], distributed algorithms are pro-
posed for the energy management of networked MGs, there is no the-
oretical proof of the convergence. The lack of the convergence guar-
antee may raise concern about the reliability of their methods. In [29],
an on-line ADMM algorithm is leveraged for solving their problem.
Compared to their work, one important contribution of our work is that
we have proved that the primal decision variables converge to the
optimal values. This is stronger than a general convergence result of the
ADMM algorithm applied to a convex problem where only the objective
value are guaranteed to converge to the optimal value.
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1.3. Contributions

We summarize the main contributions of our work as follows.

1. The energy management for multiple MGs that are interconnected
by both the DC EEN and the AC distribution network has been
studied. In our problem, the distributed storage devices are taken
into account such that the energy can be stored and released in order
to help complement the instant energy deficiency or surplus at dif-
ferent time of the day. Moreover, the AC power flow equations
without any approximation are used to accurately model the power
flow and operational constraints of the distribution networks.

2. We propose a distributed approach such that the disadvantages of
centralized methods (e.g., poor scalability, privacy concerns and
high communication overhead) can be avoided with the assurance
of convergence of our proposed algorithm. Another advantageous
feature of our ADMM-based algorithm is that we prove that the
primal decision variables converge to the optimal values, which is
stronger than a general convergence result of the ADMM algorithm.

1.4. Organization

The rest of the paper is organized as follows. In Section 2, the MG
EEN and the distribution network are modeled. The problem formula-
tion as well as its relaxed version is discussed in Section 3. The dis-
tributed algorithm is described in Section 4. Numerical results are
presented in Section 5, followed by conclusions in Section 6.

2. System model

2.1. MG direct energy exchange network model

We consider a set of N MGs, denoted byM N= ∈MG n{ : }n , where
N = … N{1, , }, and W N= ∈i n{ : }n denotes the corresponding index
set of MGs, where in denotes the index of MGn in the distribution net-
work. The time horizon is discretized, and ∈ …t H{1,2, , } denotes the
time slot +t t( , Δ], where H is the total number of time slots of interest.
Each MG is connected to a bus of the underlying distribution network
by the PCC, and is equipped with a battery as well as DERs (PV gen-
erators and WTs). These MGs are also connected by an EEN. Note that
this EEN network is a direct current (DC) network, through which only
active power is shared among MGs. Fig. 2 is an example of a three-MG
EEN. At each time slot t, if MGm transfers Tm n t, , amount of active power
to MGn, then the power received by MGn is [14,15]

− ∀ ≠T
r T

U
t m n m n, , , ,m n t

m n m n t

m n
, ,

, , ,
2

,
2 (1)

where rm n, denotes the resistance of the transmission line and Um n, de-
notes the transmission voltage, which is the sending end voltage of the
line m n( , ).

This model is applicable to any energy exchange topology since it
focuses on the power transferred on each line in an arbitrary topology.
More specifically, as in Fig. 1, if T t1,3, is 15 kW and T t3,2, is 10 kW, it
means that at time slot t, 10 kW of the power is transferred from MG1 to
MG2 passing through MG3, while 5 kW is supplied to MG3. Obviously,
MG1 can also transfer power through the direct line to MG2. So our
model can cover all the possible paths between any two MGs. Note that
Tm n t, , is different fromTn m t, , , and each represents power transference, but
in opposite directions. Therefore, they are non-negative and should not
be nonzero simultaneously:

⩾ ∀T m n t0 , , , ,m n t, , (2)

= ∀T T m n t· 0 , , , .m n t n m t, , , , (3)

2.2. DS device model

We use ESn t, to denote the remaining energy level in the battery of
MGn at time slot t, and it evolves as follows:

= + − ∀+ES ES η P
η

P n t( 1 )Δ , , ,n t n t c n t
ESC

d
n t
ESD

, 1 , , ,
(4)

where Pn t
ESC
, (or Pn t

ESD
, ) denotes the charging (or discharging) power, and

∈η η, (0,1]c d are the charging and discharging efficiencies, respectively.
Note that the charging and discharging rates are respectively limited by
the power ratings Pn t

ESC
, and Pn t

ESD
, , and they cannot be nonzero at the

same time. Also, the storage level should be within a certain range at
each time slot and the constraints are given as follows:

⩽ ⩽ ∀P P n t0 , ,n t
ESC

n
ESC

, (5)

⩽ ⩽ ∀P P n t0 , ,n t
ESD

n
ESD

, (6)

= ∀P P n t· 0 , ,n t
ESC

n t
ESD

, , (7)

⩽ ⩽ ∀ES ES ES n t, ,n n t n, (8)

where ESn and ESn denote the lower and upper bounds of the per-
mitted storage levels, respectively. In addition, the battery’s operational
cost Cn t

ES
, is modeled by its conversion loss, i.e.,

⎜ ⎟= − + ⎛
⎝

− ⎞
⎠

∀C η P
η

P n t(1 ) 1 1 , .n t
ES

c n t
ESC

d
n t
ESD

, , ,
(9)

Moreover, we set a lower bound and an upper bound for the storage
level at the end of the time horizon such that both charging and dis-
charging will be available for the future:

⩽ ⩽γ ES ES γ ES· · ,n n n H n n, (10)

where ⩽ ⩽ ⩽γ γ0 1n n .
Note that this paper focuses on the short-term energy scheduling of

MGs, and thus, the battery lifetime and degradation cost are not con-
sidered. For detailed quantification analysis about the battery lifetime
and degradation cost, please refer to our previous works [30,31].

2.3. Renewable energy generation and demand models

2.3.1. Renewable energy generation
Each MG is equipped with a PV generator and a WT. In our day-

ahead scheduling problem, we use Pn t
RE
, to denote the renewable energy

generation of MGn at time slot t. First, we assume that Pn t
RE
, can be

predicted for the next 24 h with tolerant errors and second, the pre-
diction errors are handled by applying our method with an MPC-based
approach (in Section 5). We emphasize that our problem mainly focuses

Fig. 2. An example of a three-MG EEN.
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on understanding the tradeoff between energy storage, direct energy
exchange of MGs and the interaction with the main grid in a day-ahead
manner, thus the detailed prediction methods of the renewable energy
generation is beyond the scope of this paper.

2.3.2. Demands
The load demands of MGs and other buses can have active and re-

active parts, which are denoted by

= +S P jQ ,i t
L

i t
L

i t
L

, , , (11)

where i is the index of nodes in the distribution network. The demands
of MGs can be met by either self renewable generation, battery dis-
charging, energy exchange with other MGs or purchasing from the main
grid.

2.4. Distribution network model

A distribution network in most cases is a radial network and can be
represented by a treeT K E= ( , ), whereK and E denote the node set
and the branch set, respectively. Each node (bus) indexed by

K∈ = …i K{1, , } is either a pure load or an MG, and E = K| | is the
cardinality of the branch set. The tree is rooted at the substation bus
indexed by =i 1. In a radial network, every node K∈ ⧹i {1} has a
unique parent bus denoted by i0. Thus, we can simplify the notation
index of variables on directed branches i i( , )0 to be i. In Fig. 3, for in-
stance, at time slot t, the complex power flow from node i0 to node i can
be defined as

K= + = ∀ ∈ ⧹∗S P jQ V I t i, , {1},i t i t i t i t i t, , , , ,0 (12)

where Pi t, and Qi t, are active and reactive parts of the power flow, re-
spectively.

It should be noted that we only consider the single-phase balanced
distribution systems. Moreover, only the overhead lines, instead of
cables, are studied in the distribution network, such that the line ca-
pacitances are ignored. Extension of this work to taking into account
the line capacitances as well as more devices such as shunt capacitors
and transformers in unbalanced distribution networks can be an inter-
esting future work.

We denote zi, xi and ri as the branch impedance, reactance, and
resistance, respectively, and we use vi t, and li t, to denote the squared
magnitude of the bus voltage Vi t, and the branch current Ii t, , respec-
tively. Therefore, based on the branch flow model [32], the relationship
among these parameters can be summarized as follows, ∀ t , K∈ ⧹i {1},

∑= − −
∈

P P r l P ,i t
A

i t i t i t
k N

k t, , , , ,
i (13)

∑= − −
∈

Q Q x l Q ,i t
A

i t i t i t
k N

k t, , , , ,
i (14)

= + + − +v v r x l r P x Q( ) 2( ),i t i t i i i t i i t i i t, ,
2 2

, , ,0 (15)

=
+

l
P Q

v
,i t

i t i t

i t
,

,
2

,
2

,0 (16)

where Pi t
A
, andQi t

A
, denote the active and reactive power drawn out of the

distribution network to the load at bus i, respectively.
K= ∈ =N j j i{ : }i 0 is the set of the children buses of i. Eqs. (13) and

(14) are the power conservation equations, where r li t i t, , represents the
power loss on branch i. Eq. (15) comes from the combination of (12)
and Ohm’s law after some simple manipulation. Eq. (16) is from (12)
after squaring. The voltage at each bus needs to be restricted in an
allowable range to ensure the system stability and security:

K⩽ ⩽ ∀ ∈ ⧹v v v t i, {1},i i t i, (17)

where vi and vi are the lower and upper bounds of the squared mag-
nitude of bus voltage, respectively. Note that at the root bus ( =i 1), the

voltage is fixed as V1 (i.e., ≡v vt1, 1) where V1 is the rated voltage. An-
other boundary condition is as follows:

∑− = − + = ∀
∈

S P jQ S t( ) , ,t
A

t
A

t
A

i N
i t1, 1, 1, ,

1 (18)

which represents the total power injected into the distribution network.
The total energy purchase cost is defined as:

= − ∀C PR P t·( ) ,t
P

t t
A

1, (19)

where PRt is the TOU price given by the main grid. Note that P t
A

1, is
negative since at the substation ( =i 1), power is fed into the distribution
system.

We underline that our model has a two-level network structure, in
which the EEN is isolated and separated from the distribution network
and our energy sharing scheme only affects the amount of net power,
Pi t

A
,n , injected (drawn) into (from) the distribution network. Therefore,

the radial structure of the distribution network is not changed and the
branch flow model is indeed applicable to our problem.

3. Problem formulation and exact relaxation

In this work, we consider the MGs which are willing to cooperate
with each other to reduce the overall cost. These MGs have the suffi-
cient incentive because the benefit of the overall cost reduction will be
shared among the MGs such that each MG can pay a lower energy bill.
The detailed mechanism for pricing and profit sharing in the EEN is
beyond the scope of this paper, while our previous work about the
pricing for hybrid energy trading market [3] is an example.

The objective of our problem is to minimize the total cost of the
distribution network including: (i) the payoff for buying power from the
main grid, (ii) the battery’s operational cost, and (iii) the power loss
costs in the distribution network and the EEN, with corresponding
weighting factors ∈ …ω i, {1, ,4}i . As for constraints, we take into account
the mutual exclusive constraints on energy exchange powers (i.e., Eq.
(3)), the power balance constraints (i.e., Eqs. (20)–(22)), the system
operational constraints on the power flow (i.e., Eqs. (13)–(16)) and
voltage (i.e., Eq. (17)) as well as the battery’s operational constraints
(i.e., Eqs. (4)–(8), (10)). Mathematically, the optimization problem is as
follows: �Problem

N

N

∑

∑

∑

+ + ⎛
⎝

− ⎞
⎠

+ ⩾ + +

=

∈ ⧹

∈ ⧹

XC

P P T

P P P T

min ( )

s.t.

,

X
t

t

H

t

i t
A

n t
RE

m n
m n t

r T

U

n t
ESD

n t
L

n t
ESC

m n
n m t

1

, ,
{ }

, ,

, , ,
{ }

, ,

t

n
m n m n t

m n

, , ,
2

,
2

(20)

K⩽ ∀ ∈ ⧹Q Q t i, , {1},i t
L

i t
A

, , (21)

K W⩽ ∀ ∈ ⧹P P t i, , ,i t
L

i t
A

, , (22)

N− ⩽ ∀ ∈P P t n, , ,i t
A

n t
inj

, ,n (23)

Fig. 3. Branch flow model from bus i0 to i.
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(2)–(8), (10), (13)–(17),

where =X P P P T( , , , )t i t
A

n t
ESC

n t
ESD

m n t, , , , , is the vector of decision variables, and
other state variables such as Pi t, , Qi t, , vi t, and li t, can be determined based
on decision variables. In addition, the cost function =XC ( )tt
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K W⧹ denotes the pure load bus set excluding MGs. Note that con-
straints (23) are imposed such that the power injection of MGs to the
main grid is limited by the upper bounds Pn t

inj
, . In addition, the in-

equalities in Constraints Eqs. (20)–(22) actually allow the over-sa-
tisfaction of the loads. This kind of constraint has been used by many
other papers [33–35]. The allowance for the over-satisfaction of load is
a sufficient condition for that the OPF problem over a tree network has
zero duality gap [34] and the SOCP relaxation is exact [33]. Moreover,
it has been shown that the optimal solutions for the problem with the
over-satisfaction constraints are expected to make the constraints
binding, i.e., the equality will hold for these constraints [35]. In fact,
after we solve our problem, we have verified that the equality indeed
holds for all these constraints, which means that all the active and re-
active powers are balanced.

ProblemP is non-convex because of the non-convex constraints 3, 7
and 16. As to the constraints (3), since the objective of this minimiza-
tion problem is an increasing function of both the charging and dis-
charging rates, and with the balance constraint (20), these variables are
naturally mutual exclusive at the optimal point. Thus we can just re-
move them because they are incorporated in our formulation implicitly.
For the same reason, we can remove constraints (7). In order to tackle
the difficulty brought about by constraint (16), we relax it to the fol-
lowing convex inequality constraint:

K⩾
+

∀ ∈ ⧹l
P Q

v
t i, , {1}.i t

i t i t

i t
,

,
2

,
2

,0 (24)

Using (24), a relaxed problem P−relaxed is formulated as follows,
�−relaxedProblem :

∑
=

XCmin ( )
X

t
t

H

t
1t

s.t. (2), (4)–(6), (8), (10), (13)–(15), (17) and (20)–(24).
The relaxation is said to be exact if (24) is binding at the optimal

solution of the problem P−relaxed. The sufficient conditions for the
exactness of the relaxation are referred to [21], which have been ver-
ified in many real and standard distribution network testbeds. In es-
sence, if the bus voltage is kept around the nominal value and the
power injection at each bus is not too large, then the relaxation is exact
[16,36]. We assume that these sufficient conditions hold in our pro-
blem, and this can be easily proved when the DG penetration level is
not too high compared to the load consumption so that there is no re-
verse power flow. Moreover, we will illustrate the exactness by nu-
merical results (in Section 5). The problemP−relaxed is then in nature
a second-order cone programming (SOCP) problem and can be solved by
convex optimization solvers such as CVX.

4. Distributed algorithm

We focus on developing a distributed algorithm for solving the
problem P−relaxed in this section, which has many advantages over a
centralized method in terms of scalability, privacy, etc. In our ap-
proach, each agent (MG or LAO) only needs to communicate with its
neighbors and there is no central node. Additionally, the proposed
distributed method can be proved to converge to the optimal solution.

Specifically, our problem can be reformulated into a global variable
consensus optimization (consensus for short) problem and be solved based
on the ADMM [23]. Thus, we first introduce the ADMM framework and
then describe our distributed approach.

4.1. ADMM

The ADMM algorithm solves problems in the form:

+
+ =

f x g z
Ax Bz c

minimize ( ) ( )
subject to , (25)

and its corresponding augmented Lagrangian is:

= + + + − + + −L x y z f x g z y Ax Bz c ρ Ax Bz c( , , ) ( ) ( ) ( ) ( /2)‖ ‖ .ρ
T

2
2 (26)

The algorithm consists of the following iterations:

=+x L x z yargmin ( , , ),k

x
ρ

k k1
(27.1)

=+ +z L x z yargmin ( , , ),k

z
ρ

k k1 1

(27.2)

= + + −+ + +y y ρ Ax Bz c( ),k k k k1 1 1 (27.3)

where >ρ 0. The convergence properties are referred to in [23, §3.2],
with quite moderate assumptions (i.e., f and g are closed, proper and
convex and L0 (i.e, Eq. (26) with =ρ 0) has a saddle point). Next, we
will introduce our ADMM-based distributed algorithm.

4.2. Distributed algorithm for our problem

In our problem, we consider each MG and the LAO as an individual
agent. Then, the objective and constraints are separable with respect to
this split. Specifically, the first two terms in the objective can be viewed
as the cost of the LAO with corresponding constraints (13)–(15), (17)
and (21)–(24), then the last two terms in the objective and the re-
maining constraints can be handled by each MG separately. However,
since the distinct +N 1 agents share some variables, which make them
couple with each other, we make local copies of every coupling variable
and assign them to each agent involved, to decouple them. Moreover,
we add additional equality constraint to make every copy of the same
shared variable equal to the global one, which we call the consensus.
This is a generalized consensus problem since each agent involves only
some element of the global variable. Therefore, we make copies of those
shared variables instead of all of them to reduce the complexity.

In detail, Pi t
A
,n is the variable shared by MGn and the LAO because of

constraints (13) and (20), whileTm n t, , andTn m t, , are shared by MGn and MGm
via (20). Therefore, we denote these coupling variables as

=X P T T( , , )cp t
n l

i t
A mg l

m n t
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n m t
l

,
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,
( , )

, ,
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, ,
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n , ∀ ≠m n, for the local copies of coupling
variables of MGn, and its consensus counterpart is with superscript
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n . Similarly, we denote the local copies and
consensus of the shared variables of the LAO as: =X P( )cp t
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i t
A lao l

,
( )

,
( , )

n and
=X P( )cp t
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i t
A c

,
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,
( )

n . Since all the other variables are not shared, they do not
need to be copied and have only the consensus, i.e., =X P P( , )nc t

n c
n t
ESC c

n t
ESD c

,
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,
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for MGn and =Xnc t
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,
( ) for the LAO.

Furthermore, we use some symbols to denote the different constraint sets for
simplicity. We denote Ωn

l as the set of variables that satisfy constraint (20),
for each MGn, and Ωlao

l as the set of variables satisfying constraint (13). In
addition, we denote Ωn

c as the set of those satisfying constraints (2), (4)–(6),
(8) and (10), while Ωlao

c denotes the set of those satisfying constraints Eqs.
(14), (15), (17), (23), and (24). As to the objective function, we use

XC ( )t
lao

lao t, to denote the first two terms in XC ( )tt , and

= + ∑ ∈XC ω C ω( )t
n

n t n t
ES

v w
r T

U, 3 ,
1
2 4 ( , ) Θn

v w v w t

v w

, , ,
2

,
2 to denote the split of the last two

terms in terms of each MGn, where W= ∈v w v wΘ {( , )| ,n , =v n or =w n
but ≠v w}. In this way we can transform the problem P−relaxed as fol-
lows:
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Now, the formulation above has the same form as (25) so the ADMM based
algorithm (i.e., Eqs. (27.1)–(27.3)) can be applied, which are known as x-
update, z-update and dual variable update steps, respectively. For x-update, since
the objective and constraints are separable in terms of agents, this update can
be conducted in parallel and in a distributed manner. Specifically, at the
(k+1)-th step, the LAO’s x-update solves

∑ + + −
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and the MGn’s x-update solves
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where ylao
k( ) and yn

k( ) are dual variables of the LAO and MGn, respectively. The
z-update step takes the average of the shared variables’ copies and assigns it to
the consensus variables at the (k+1)-th step (as shown in [23]). In the dual
variable update step, the dual variables are separately updated to drive the
variables into the consensus, given by (33) and (34), for the LAO and MGn,
respectively:

= + −+ + +y y X Xρ ( ),lao
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n c k1 1 1( ) ( )

,
( )( )

,
( )( )

(35)

Note that in general, the z-update needs to be handled by a central collector.
However, in our problem, the coupling variables Pi t

A
,n and Tm n t, , are shared

solely between 2 neighbors (i.e., MGn &LAO, MGm &MGn, respectively),
which means that the z-update step (averaging step) can be done by com-
munications among neighbors and, consequently, no central collector is
needed. Then, the z-update is carried out in a fully distributed fashion. To sum
up the aforementioned steps, we

Algorithm 1. ADMM-based fully distributed algorithm

1: Initialization: k← 0, all the dual variables yn
l (0), ylao

l (0) and primal

variables Xcp t
n l

,
( )(0), Xnp t

n c
,
( )(0), Xcp t

n c
,
( )(0) Xcp t

lao l
,

( )(0), Xnp t
lao c

,
( )(0), Xcp t

lao c
,

( )(0) are
initialized to 0, k← 1, input ρ.

2: Repeat:
3: x-update in parallel: the LAO solves (32) and MGn solves (33) to

get the (k+ 1)-th values.

4: z-update in parallel: each agent communicates with its neighbors
and takes an average on the shared variables’ copies to get the
(k+ 1)-th consensus.

5: dual variable update in parallel: the LAO updates by (34) and MGn
does it by (35).

6: k← +k 1
7: Until: convergence conditions are satisfied (the primal and dual

residuals are small) [23, §3.3.1].
propose the method in Algorithm 1 and the convergence of this
proposed method is assured by the following theorem.

Theorem 1. The solution of the proposed ADMM-based distributed
algorithm can converge to the optimal solution of problem P−relaxed.

Proof. First, we combine constraint (31) to a compact form
=AX Xt

l
t

c( ) ( ), where Xt
c( ) and Xt

l( ) represent local copies and the
consensus of the shared variables, respectively. Then, the
reformulated problem (28) is a two block consensus problem as
described in [37]. Thus, the sufficient conditions for the ADMM to
converge to the optimal solution under convexity of the objective
function and constraint sets is that the matrix A has full column-rank
[37]. Due to the fact that each of the coupling variables are shared only
between the two direct neighbors in our problem, A can be easily
derived and shown to satisfy this condition. □

It should be noted that the convergence result of our proposed
ADMM-based algorithm is stronger than a general convergence result of
the ADMM algorithm applied to a convex problem, where the primal
variables need not converge to the optimal values [23, §3.2.1]. Fur-
thermore, in Algorithm 1, at each iteration, MGs and the LAO only need
to update the local copies of the shared variables, and then commu-
nicate with neighbors to update the consensus, followed by the dual
variable update, and so forth. Finally, different copies are driven to be
identical to the mutual consensus. Since every update can be taken in
parallel among agents, this algorithm is distributed.

5. Numerical results

5.1. A 34-bus radial distribution network

We apply our energy management model on a 34-bus radial dis-
tribution network, as shown in Fig. 4. It is noted that in this figure,
while each MG is represented by a circle and connected to the dis-
tribution network via a point of common coupling, it does not mean
that a MG only has one node. In fact, a MG can include several nodes of
the network inside of it and in this paper, we mainly focus on the co-
operation and interaction among MGs and the main grid. Therefore, the
topology inside a MG is not shown here. This radial network has a main
feeder and 4 laterals with a rated voltage of 22 kV and an allowed
voltage range of ±5%. Details and load data can be found in [38] with
some slight modifications. We assume that three MGs ( =N 3) are lo-
cated at nodes 4, 8, and 19, respectively. All the other nodes are pure
loads (for ∈ … ⧹i {2,3 34} {4,8,19}, =K 34) except node 1, which is a slack
bus. For the EEN, we consider 4 different topologies as in Fig. 5, and the

Fig. 4. A 34-bus radial distribution network.
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line resistances ( ↔MG MG1 2, ↔MG MG1 3, ↔MG MG2 3) are 2.5 Ω,
2.5 Ω and 0.075 Ω, respectively. The transmission voltage =U 1.58 kVi j, ,
∀ ∈i j, {1,2,3}, ≠i j. Time is slotted into 48 intervals for 24 h ( =H 48),
so =Δ 0.5 h. =ES 100n kWh and =ES ES0.2n n for each MG. The
charging and discharging efficiencies are =η 0.95c and =η 1d , respec-
tively. Furthermore, =γ 0.8n , and =γ 1n . The charging and discharging
rates limit is 30 kW and the weighting factors =ω i{ , {1,2,3,4}}i are
{0.1,5,0.3,2}. The load profiles for different buses are some typical con-
sumption profiles from Slovenian distribution companies [39] and the
TOU price is the Summer Rate obtained from the website of PG& E
Company [40], shown in Figs. 6 and 7a, respectively. The renewable
energy generation profiles are from California Independent System Op-
erator [41] and the generation capacities are 80 kW, 150 kW and
150 kW for MGn, ∈n {1,2,3}, respectively.

Fig. 5. Four different EEN topologies.

Fig. 6. Load and renewable energy generation profiles.

Fig. 7. Normalized price, energy storage evolutions and power transmissions in EEN.

Fig. 8. Evolutions of primal & dual residuals for different values of ρ.

Fig. 9. Evolutions of objective values for different ρ.

Table 1
Loss comparison for different topologies.

Cases loss1 (106) loss2 (104) loss3 (104)

w/o EEN 1.0820 2.4542 0
Case (a) 1.0710 (1.02%) 2.4214 (1.34%) 1.2716
Case (b) 1.0722 (0.91%) 2.4457 (0.35%) 1.1541
Case (c) 1.0757 (0.58%) 2.4325 (0.89%) 0.7185
Case (d) 1.0760 (0.56%) 2.4263 (1.14%) 0.6929

Fig. 10. Maximum power flow over buses (34-bus testbed).
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From Fig. 6, we can see that different MGs have different con-
sumption profiles during the day and night. More specifically, MG1
behaves as an industrial user who has a continuous high demand during
the day. MG2 is a typical residential user with low power consumption
during working hours while the peak demand appears during the night.
In contrast, MG3 shows complementary behavior to MG2, which is
common for commercial users. Their renewable energy generation
profiles are similar, in view of that they are not too far away from each
other and correlations are assumed to exist among MGs.

With the numerical results, we have verified that constraint (24) is
indeed binding at the optimal solution of problem P−relaxed, which

shows that the solution is also optimal for original problemP . Then we
demonstrate the optimal energy management strategies in terms of DS
units and MG energy exchange for the fully connected EEN topology
(case (a)) in Fig. 5. First, in Fig. 7a, on the one hand, all MGs choose to
discharge at around 9 a.m. when the electricity price starts to rise,
which reduces energy purchase from the main grid. On the other hand,
they recharge at midnight when the price is the lowest. Second, Fig. 7b
gives the detailed energy transmissions in the EEN. It can be seen that
MG1 always transmits energy to the other two MGs because MG1 is
closer to the feeding entry (Bus 1) of the distribution network, and a
mass of power flows by MG1 to feed the downstream part of the dis-
tribution network. Therefore, it is reasonable to transmit energy by
short path from MG1 to the other two MGs. However, the inverse
transmission is not preferable because it is opposite to the main power
flow direction. Another result is that the energy transmission between
MG2 and MG3 changes directions alternately. We can see that during the
morning (from 00:00 to 06:00) and night (from 20:00 to 24:00) periods,
MG3 has an energy surplus while MG2 has an energy deficiency. In this
case, MG3 acts as a supplier during this period while it becomes a re-
ceiver during working hours. In summary, Fig. 7b demonstrates the
dynamic interaction among MGs according to their distinct energy
consumption behaviors and relative geographical locations in the dis-
tribution network.

Figs. 8 and 9 show the convergence performance of Algorithm 1
against different parameters ρ, ranging from 0.2 to 2. It can be seen that
different choices of ρ can make a difference at the beginning of the
algorithm, and after several dozens of iterations, all of them can con-
verge. The same phenomena can be observed for the evolution of ob-
jective values. Therefore, our algorithm has good performance in con-
vergence rate and is not too sensitive to the value of ρ, except for the
first several iterations.

Table 1 lists the comparisons of different losses among different EEN
topologies. In the table, lossn, ∈n {1,2,3}, represent the loss of power
flow, the battery’s conversion loss and the MG energy exchange loss,
respectively. The four EEN topologies are compared with the one
without direct energy exchange, and their improvements (i.e., the re-
duced loss in %) are shown in parentheses. From the table, it is clear
that the fully connected topology, case (a), can bring the highest re-
ductions of loss1 & loss2. While for the other three cases, case (b) has
advantages over the other two, since it improves the most for loss1,
which achieves the largest loss reduction, although it has a worse
performance in terms of loss2 & loss3, which have a much lower order of
magnitude compared to loss1. Consistent with the previous results
(Fig. 7b), the transmission lines between MG1 and the other two MGs
play the most important role and this can give us some insight into
which links are the most beneficial links for a specific geographical
location in the MGs network. For the planning of the EEN, the com-
parison among different topologies helps balance the trade-off between
the capital cost of EEN constructions and the benefit that EEN can
bring.

In addition, to demonstrate that our methods can successfully
manage the energy of microgrids while ensuring that the voltage and
power flow limits are not violated, we make a comparison of our results

Fig. 11. Minimum voltage over buses (34-bus testbed).

Fig. 12. Primal and dual residuals for two testbeds.

Fig. 13. A 69-bus test system.
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with those which ignore the underlying distribution network. For the
34-bus testbed distribution network, the minimum voltage profiles and
the maximum apparent power flows over the time horizon are shown in
Figs. 10 and 11. In Fig. 10, we can see that if the underlying distribution
network is ignored, the power flows on some branches can be, from 4%
(bus 5) to 39% (bus 19), higher than those of our method. Moreover, in
Fig. 11, it can be seen that some bus voltages (bus 23 to bus 27) are
lower than the stable voltage limit (which is 0.95 p.u. in our simula-
tion). Therefore, from Figs. 10 and 11, we can see that if the energy
management problems are carried out without considering the under-
lying distribution network like the existing methods in the literature,
the voltage limits and power flow limits may be violated, which will
damage the security and stability of the system. By contrast, our
method successfully manages the energy of microgrids without vio-
lating any system operational constraint by taking the distribution
network into account.

5.2. 69-bus and 119-bus test systems

In order to show the scalability of our method for larger systems, we
have performed more simulations on a 69-bus distribution network
[42] with 6 microgrids (Fig. 13) and a 119-bus distribution network test
system [43] with 11 microgrids (Fig. 14), where =ρ 1 for all the si-
mulations. Our proposed ADMM algorithm is solved by the CVX solver
on a single machine with an i5 dual-core processor, while the compu-
tations for each agent are carried out in a parallel way with the help of
the Parallel Computing Toolbox in MATLAB. The convergence of primal
and dual residuals for these two test systems are shown in Fig. 12. From
the figure, we can see that, for larger systems, our algorithm also has
good performance in the convergence rate. Specifically, it only takes
several dozens of iterations to converge, which is similar to the case of
the 34-bus system. Therefore, our proposed distributed algorithm is
scalable and applicable to large systems. From the simulation results in
Figs. 8, 9 and 12, the good convergence performance of our method is
demonstrated and thus, the communication burden with this small
number of iterations is tractable. Furthermore, since our algorithm is
carried out in a distributed manner, at each iteration the agent only
needs to update the information with its direct neighbors and this will
alleviate the communication burden. Additionally, considering that the
ADMM algorithm has been widely employed in lots of applications,
many acceleration techniques [44,45] have been studied based on the
ADMM method to further improve the convergence performance. For
example, in [44,45], a restarting rule is applied based on the ADMM
algorithm and a faster convergence performance has been observed in a
variety of problems. Therefore, even though our algorithm has shown a
good convergence performance, it can be beneficial to leverage various
accelerating techniques such that our ADMM-based distributed algo-
rithm can be further improved.

5.3. Implementation with an MPC-based approach

In the simulations above, we assume that a perfect estimation of the
input of renewable energy to facilitate the operations of our proposed
scheme since we are focusing on the day-ahead market. To render our
proposed method more realistic, we have integrated it into the frame-
work of MPC-based approach to solve the problem. Compared to the on-
line ADMM method proposed in [29] for solving the energy manage-
ment problem of networked MGs, the MPC-based approach can exploit
the prediction information of the renewable energy generation for
several hours in advance, which is not taken into account in the on-line
ADMM algorithm. Specifically, we assume that there is a window with
the size of W hours, which means that we can have a prediction (either
with or without errors) of the energy price, the renewable energy

Fig. 14. A 119-bus test system.

Table 2
Relative errors (%) of the MPC-based approach without prediction error.

ESn (kWh) 100 200

Pn t
ESC
, (kW) 30 10 30 10

W (h) 1 0.93 0.55 1.13 0.57
2 0.35 0.24 0.59 0.41
3 0.31 0.22 0.23 0.38
4 0.71 0.35 0.80 0.49
5 1.10 0.42 1.18 0.50
6 0.44 0.25 0.68 0.40
7 0.34 0.23 0.60 0.34
8 0.35 0.21 0.56 0.31

Table 3
Relative errors (%) of the MPC-based approach with prediction errors.

ESn (kWh) 100 200

Pn t
ESC
, (kW) 30 10 30 10

W (h) 1 0.93 0.55 1.13 0.57
2 0.35 0.24 0.59 0.41
3 0.31 0.22 0.51 0.38
4 0.72 0.34 0.95 0.49
5 1.10 0.41 1.29 0.50
6 0.45 0.25 0.64 0.40
7 0.35 0.22 0.57 0.34
8 0.35 0.21 0.55 0.31
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generation outputs and the loads for the future W hours. Therefore, at
each time slot tα, we solve the energy management problem from tα to

+t Wα as follows,

∑
=

+

XCmin ( )
X

t
t t

t W

t
t α

α

(36)

∀ ∈ +t t t Ws.t. all the constraints, [ , ].α α

After the problem is solved, only the optimal decision at the first step
=t tα is applied. Then the window moves to the next time slot

+ + +t t W[ 1, 1 ]α α with the updated prediction information. This pro-
cedure is repeated until the end of the entire time horizon
( + =t W Hα ). The implementation of integrating our algorithm into
the MPC-based approach is as follows:

(1) Given a window size W, at =t 1α , initialize the prediction of the
energy price, the renewable generation outputs and the loads for

∈ +t t t W[ , ]α α .
(2) Solve Problem (36) for ∈ +t t t W[ , ]α α and carry out the optimal

decision at the first time slot tα.
(3) If + <t W Hα , then ← +t t 1α α and update the prediction in-

formation. Go back to Step (2) and repeat the procedure until the
end of the time horizon.

When we implement our algorithm with the MPC-based approach,
two kinds of case studies are carried out depending on whether the
prediction errors within the prediction windows are taken into account.
In the first case, we assume that a perfect prediction can be obtained for
the energy price, the renewable energy generation outputs and the
loads within the window of future W hours. In the second case, we
consider that at time =t tα, the renewable generation data at the cur-
rent time slot =t tα can be known perfectly, while there is an additional
noise applied to the predicted renewable generation data for the future
time slots in the window ∈ + +t t t W[ 1, ]α α . The noise for the renew-
able energy outputs of MGn at each time slot is assumed to follow a
normal distribution N σ(0, )n , where σn denotes the standard deviation of
the error distribution. In our case studies, we set: =σ 2.51 kW, =σ 52 kW
and =σ 53 kW, respectively.

Next, for both cases with and without prediction errors of the re-
newable energy generation, we compare the objective value obtained
from our proposed method implemented with an MPC-based approach
for different window sizes (W), i.e., = …W 1,2, ,8 hours, with the real
optimal objective value which is obtained by assuming that the re-
newable generation is perfectly predicted for the whole time horizon.
The simulations are carried out for different scenarios with different
energy storage capacities (ESn ), i.e., =ES 100n kWh, or 200 kWh,

=n 1,2,3, and different charging and discharging power limits, i.e.,
= =P P 30n t

ESC
n t
ESD

, , kW, or 10 kW, =n 1,2,3. The relative errors (∊) of the
objective values obtained by the MPC-based approach and the real one
are shown in Tables 2 and 3 corresponding to the cases without and
with prediction errors, respectively.

From the tables, it can be seen that, for both cases, the relative
performance loss of applying our method with an MPC-based approach
are quite small. Particularly, when the charging and discharging power
limits are small, the MPC-based method works very well. This is be-
cause at each time slot, very aggressive charging/discharging actions
are avoided to ensure that there is enough storage buffer for the future
use. In addition, the performance of the two cases is very close to each
other. This is because only the decision at the first time slot of each
window is implemented, and thus the small prediction errors will not
incur much performance loss under the MPC-based approach.
Therefore, it is validated that by implementing our method with the
MPC-based approach, the performance loss due to the prediction errors
is acceptable.

6. Conclusions

In this work, we studied the energy management problem for co-
operative MGs with direct energy exchange under the distribution
network and developed a distributed algorithm. We formulated the
energy management problem as a practical yet non-convex optimiza-
tion problem to minimize the total system cost. After exploiting an
exact relaxation of the non-convex constraint, we equivalently trans-
formed this problem into an SOCP problem and thus made it efficiently
solvable. Then convergence of our ADMM-based method was proved
and verified with numerical results. By applying our model to three
distribution network testbeds, we showed the scalability of our pro-
posed method and also, we found a cooperation between energy storage
devices and the EEN among heterogeneous MGs, instead of solely re-
lying on the main grid to satisfy their load demands. Another finding
was that the MG that was closer to the upstream part of the distribution
network had a tendency to act as an energy supplier in the EEN, which
could bring a lower cost. What’s more, the performances of different
EEN topologies were tested and we found that certain transmission lines
were more beneficial than others.

This work can be further extended in two directions. First, we will
take into account the intermittency of renewable generation and de-
mand, for which the current deterministic methods would be no longer
applicable. Second, we will investigate the detailed internal trading
mechanism, such as how to control the pricing in the EEN to encourage
energy sharing among different MGs.
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