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Serving Electric Vehicles Based
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Abstract—A battery charging station (BCS) is a charging
facility that supplies electric energy for recharging electric vehi-
cles’ depleted batteries (DBs). A BCS has a certain number
of charging bays and maintains a dynamic inventory of fully
charged batteries (FBs). This paper studies a BCS schedul-
ing (BCSS) problem whose target is to schedule the charging
processes of the charging bays such that the charging cost is min-
imized while satisfying the FB demand. Specifically, the BCSS
problem has two types of operations: 1) loading DBs into the
charging bays and then unloading them to the FB inventory
when they are fully charged and 2) controlling the charging rate
of each charging bay. We formulate the BCSS problem as a
mixed-integer program with quadratic battery degradation cost.
A generalized benders decomposition algorithm is then developed
to solve the problem efficiently. The salience of the developed
algorithm is that: 1) each charging bay can solve its own subprob-
lem separately and 2) each subproblem can be further partitioned
into multiple independent and identically structured quadratic
programming problems, and thus the algorithm facilitates an
efficient parallel implementation. We perform extensive real data
simulation to validate the optimization model and demonstrate
the efficiency of the proposed algorithm.

Index Terms—Battery charging station, charging scheduling,
electric vehicles, generalized benders decomposition, battery
swapping.

NOMENCLATURE

Acronyms

BCS Battery Charging Station
BCSS Battery Charging Station Scheduling
BDC Battery Degradation Cost
BSS Battery Swapping Station
CB Charging Bay
DB Depleted Battery
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EPC Electricity Purchasing Cost
FB Fully-Charged Battery
SoC State-of-Charge of batteries.

Indices and Parameters

α The minimum level of SoC for a battery to be
regarded as fully-charged.

�T The length of each time slot.
ηb Charging efficiency of the b-th CB.
B Set of all CBs.
Gb(·) The battery degradaction cost function.
T Set of time slots {0, . . . , T − 1}.
CBb The b-th CB.
θ The capacity of batteries.
B Total number of charging bays.
b Index for CBs.
C Transmission line capacity
dt FB demand at time t
Ft Total number of FBs at time t.
Lt Non-battery load at time slot t
pt Electricity price at time slot t.
rmax

b Maximum charging rate of CBb.
sb,t SoC of the battery in CBb at time t.
snew

b,t SoC of the newly-loaded battery in CBb at t.
sinitial

b Initial SoC of battery in CBb.
T Total number of time slots.

Decision Variables

rb,t Continuous decision variable: charging rate of the
battery in CBb at time slot t.

ub,t Binary decision variable: ‘1’ if the battery in CBb

at time t is unloaded; ‘0’ otherwise.

I. INTRODUCTION

AS THE adoption rate of electric vehicles (EVs) is increas-
ing, there is a growing demand for fast and convenient

energy refueling services. Currently, EV energy refueling is
mainly performed by several well-known charging methods,
such as slow charging at home [1] and fast charging at
public charging stations [2]. However, many EVs, especially
electric buses and taxis, have started to support swappable
batteries [3], [4], and this facilitates an alternative EV energy
refueling method, i.e., the battery-swapping method [5], [6].
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Compared to the long charging time of existing charg-
ing methods (usually in hours), with the battery-swapping
method an EV can swap its depleted battery (DB) for a fully-
charged battery (FB) one at a battery swapping station (BSS)
within several minutes [3], or even in tens of seconds [6]. The
swapped DBs from different BSSs can be gathered together
and recharged at a centralized battery charging station (BCS),
which thus forms a gigantic battery energy storage system.
It is believed that if appropriately planned and managed, the
battery-swapping technology can not only benefit EV own-
ers with a fast energy refueling service [7], but it can also
provide enormous flexibility for grid operators to perform crit-
ical tasks such as load balancing [8] and renewable energy
integration [9], [10], thus reducing carbon emissions [11] and
improving the efficiency and stability of power systems [12].

Undoubtedly, successful implementation of an EV energy
refueling system based on battery swapping necessitates a
well-designed scheduling strategy for BCSs. To this end,
an increasing amount of research from the communities of
power engineering (e.g., [13]–[18]) and operations research
(e.g., [19]–[22]) has started to investigate the modeling and
scheduling of BCSs from different perspectives. For example,
Sarker et al. [16] studied the optimal cost-effective operation
of a BCS with an uncertain electricity price and uncer-
tain FB demand, and services such as battery-to-grid and
battery-to-battery were discussed. Recently, You et al. [17]
investigated the optimal charging scheduling of a BCS serving
electric buses. Since the operation of electric buses is usu-
ally predictable, they assumed that each charging bay (CB)
in the BCS had a fixed and known battery-swapping request.
In [19], the optimal charging and discharging policies for max-
imizing the expected total profit over a fixed time horizon
were proposed. Different from [19], Worley and Klabjan [20]
investigated the joint optimization of the battery charging and
purchasing strategies for a single BCS and a network of BCSs.
Therefore, the long-term investment in batteries and the short-
term operational cost could be balanced. The work in this
paper is also particularly related to [22], in which the authors
defined the scheduling of a BCS as a new inventory manage-
ment problem. The main task of this inventory management
problem was the development of an optimal charging strategy
that optimizes the corresponding objective and satisfies the FB
demand simultaneously.

Despite the aforementioned work, the following three
important aspects of a BCS have not been fully investigated
by the existing work in a unified framework.

• Charging rates are continuously-controllable: As men-
tioned in our previous work [23], the fixed charging rate
is easier to be implemented because it only requires
a simple on/off switching control. However, it is also
much less flexible for providing grid services. In compar-
ison, the continuously-controllable charging rate is more
flexible although it requires more sophisticated charging
devices. For the sake of simplicity, the charging rates
were assumed to be fixed in many existing work such
as [20] and [22]. However, with the advancement of
battery technology, it is becoming more practical and
important to have a scheduling method for BCS with

continuously-controllable charging rates. We consider a
general optimization framework for the scheduling of
BCS must take this factor into account.

• FBs should have minimum energy levels: It might be
acceptable to provide a half-charged battery for an EV
under some special circumstances. However, in general,
it is better to ensure that the state-of-charge (SoC) of a FB
is close to fully-charged. To this end, Sarker et al. [16]
and Raviv [22] introduced a weighted penalty term in
the corresponding objective to penalize those unbalanced
battery capacities. Unfortunately, there is no systematic
way to tune the weighting parameters in the objective
function to strike an optimal balance between the charg-
ing cost (usually in the unit of dollar) and the artificial
penalty (usually has no unit). Moreover, even the optimal
weighting parameter can be found, it is still difficult to
ensure a good battery-swapping service among all EVs
since the SoCs of FBs are not guaranteed to exceed a
certain minimum energy level.

• The number of CBs is limited and FBs should be ware-
housed: For a BCS in practice [3], [24], the total number
of CBs is usually limited and much smaller than the
total number of batteries. Once a battery is fully-charged,
this battery must be unloaded from the corresponding
CB and then stored in a warehouse (i.e., the FB inven-
tory). Meanwhile, a new battery will be loaded to this CB
to continue the charging process. However, most exist-
ing work neglected such type of operation in reality. For
instance, it was implicitly assumed in [16], [17], and [22]
that each battery is connected with a CB and the bat-
tery will serve an EV immediately after being unloaded
from the corresponding CB. Therefore, the FBs cannot be
warehoused, which thus deviates from the real operation
of some BCSs in practice. In fact, it is the requirement of
keeping a dynamic FB inventory with a limited number
of CBs that makes the scheduling of BCS challenging: if
the loading/unloading action happens very frequently for
the purpose of accumulating more FBs in the FB inven-
tory, then the charging control is less flexible since the
charging duration of each battery is very short. As a con-
sequence, the charging cost (e.g., the battery degradation
cost) will increase. In contrast, if the loading/unloading
action happens very slowly for the purpose of reducing
charging cost, the FB inventory may not be able to sat-
isfy the FB demand. Therefore, the BCS operator needs
to carefully schedule the loading/unloading and charging
decisions such that the optimal tradeoff can be achieved.
To the best of our knowledge, this tradeoff has not been
investigated by all the aforementioned literature.

Motivated by the aforementioned work and the above three
important factors of a BCS, this paper tries to propose a gen-
eral optimization framework for the scheduling of a single
BCS. Specifically, we focus on the following BCS schedul-
ing (BCSS) problem: Given the electricity price (e.g., the
day-ahead market) and FB demand at known epochs dur-
ing a fixed time horizon (e.g., a day), how should the BCS
operator minimize the total charging cost by controlling the
loading/unloading decisions and the charging rates of all CBs
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to satisfy the FB demand with warehoused FBs in the dynamic
FB inventory?

A. Contribution of This Paper

Motivated by the above question, this paper proposes
a general optimization framework for the BCSS problem.
Meanwhile, we also develop an efficient algorithm for solving
the BCSS problem by leveraging its special structural prop-
erty. In summary, this paper makes the following contributions.
First, we propose to formulate the novel BCSS problem as
a mixed-integer program (MIP), in which the binary actions
represent the loading/unloading of batteries and the continu-
ous actions denote the batteries’ charging rates. Our proposed
model considers the fact that the SoC of FBs should exceed
a predetermined minimum threshold, the number of CBs is
limited, and the FBs should be warehoused in the dynamic
FB inventory. To the best of our knowledge, our proposed
BCSS problem has not been studied by all the aforementioned
literature. We expect that the proposed model can be a uni-
fied framework for many possible future extensions such as
integrating renewable energy into the power grid with BCSs,
providing ancillary services by the aggregated DBs in the BCS,
etc. Second, we propose an efficient algorithm for solving the
BCSS problem. Our proposed BCSS problem is very diffi-
cult to be solved directly due to its mixed-integer nature and
the strong coupling between binary and continuous decision
variables, especially when it is in large scale. Therefore, the
second part of this paper focuses on solving the BCSS problem
by leveraging its special structural property. Specifically, we
observe that the BCSS problem has a highly decomposable
structure when fixing the binary decision variables. Therefore,
the generalized Benders decomposition (GBD) is applied to
solve the BCSS problem in an iterative manner. The salient
feature of our algorithm is that the Benders subproblem can
be solved efficiently by a highly parallel algorithm.

B. Organization of the Paper

The rest of the paper is organized as follows. We present
the details of the system model and formulation of the BCSS
problem in Section II. We then present the proposed algorithm
in Section III. As the main feature of the proposed algo-
rithm, the decomposable structure of the Benders subproblem
and a specifically-designed parallel algorithm are discussed in
Section IV. Numerical simulation and discussion are presented
in Section V. We finally conclude our paper in Section VI with
potential future work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we introduce the details of the system model
and then present the formulation of the BCSS problem.

A. Details of the System Model

As shown in Fig. 1, the system considered in this paper
consists of four parts, namely, i) the power system, ii) the
centralized BCS, which further includes the FB Inventory, the
DB Inventory, the Control Center, and the Charging Bays,

Fig. 1. The system model of a centralized BCS and multiple geographically
distributed BSSs. The centralized BCS is comprised of four components: the
FB Inventory, the DB Inventory, the Control Center, and the Charging Bays.

iii) the multiple geographically distributed BSSs, and iv) the
transportation system. The BSSs provide battery-swapping
service for EVs by first unloading a DB from an EV and then
loading a FB into this EV, namely, FBs will be consumed
by EVs and DBs will be collected by BSSs. The DBs col-
lected by BSSs will be delivered back to the DB inventory
and wait for charging service. Therefore, the batteries (includ-
ing both DBs and FBs) are circulating between the centralized
BCS and multiple geographically distributed BSSs through the
transportation system. Note that the power system supplies
electricity for the CBs and the Control Center is responsible
for all the communication and computation tasks.

Recall that this paper focuses on the BCSS problem, which
aims to investigate the optimal charging scheduling of the
centralized BCS shown in Fig. 1. In particular, the charging
scheduling is performed as follows: a DB will be loaded to one
of the CBs if that CB is idle, and then it begins to recharge.
After being fully-charged, this battery will be unloaded from
the corresponding CB and then warehoused in the FB inven-
tory. As we mentioned before, the objective of the BCSS
problem is to transform DBs into FBs with the minimum
charging cost.

Before leaving this subsection, it is worth pointing out that
our proposed BCSS problem is primarily motivated by the
scenario when the DB inventory has enough DBs while the
initial number of FBs in the FB inventory is not enough to
serve the total FB demand. Our model is not suitable for the
cases when the FB inventory is full of FBs or equivalently, the
DB inventory has very few or no DBs,1 since in these cases
the charging scheduling of the BCS becomes less urgent and
sometimes even unnecessary. Meanwhile, the specific deliv-
ery strategy of DBs and FBs in the transportation system is
beyond the scope of this paper. As a rational approximation,
we assume that the loading/unloading of batteries in the CBs is
instantaneous compared to the long charging time. Meanwhile,
it is also practical to assume that both the DB inventory and
the FB inventory are capable of warehousing all the batteries
available with no capacity constraint.

1There are two main factors that determine whether or not the DB inventory
will have enough DBs most of the time during the scheduling horizon, i.e., i)
the initial numbers of FBs and DBs, and ii) the ratio of the number of CBs
to the number of EVs. For example, if initially both the FB inventory and the
DB inventory have a limited number of batteries, and the ratio of the number
of CBs to the number of EVs is very large, then the DB inventory is highly
likely to be empty very soon.
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B. The BCSS Problem

1) Individual Constraints on Each CB: To denote the oper-
ation of when to load/unload which CB, we introduce a binary
decision variable ub,t as

ub,t = {0, 1},∀b ∈ B,∀t ∈ T ∪ {T}. (1)

Specifically, when ub,t = 1, the battery in CBb will be
unloaded at time t, and a new DB will then be loaded into this
CB to start its charging process. Otherwise, when ub,t = 0,
the current battery will be kept in CBb for time slot t, and no
new DB will be loaded into CBb. Based on this definition, the
SoC of the battery in CBb at time t, i.e., sb,t, evolves as

sb,t+1 = sb,t(1 − ub,t) + ηbrb,t + snew
b,t ub,t,∀t ∈ T , (2)

where the charging rate rb,t cannot exceed the power rating:

0 ≤ rb,t ≤ rmax
b ,∀b ∈ B,∀t ∈ T . (3)

Equation (2) indicates that when ub,t = 1, the SoC of the
battery in CBb at time t will be initialized to the SoC of the
newly loaded DB, namely, snew

b,t . Subsequently, the initialized
SoC will increase by ηbrb,t, where ηb denotes the charging
efficiency of CBb. Otherwise, when ub,t = 0, the SoC at time
t + 1 is simply equal to the SoC at time t plus ηbrb,t. Note
that in this paper, the SoC of a battery is normalized to be
a fraction between 0 and 1. Therefore, rb,t is defined to be
the ratio between the charged energy in each time slot and
the battery capacity, which denotes the increment of sb,t in
fraction instead of the real-charged power (in kW). Note that
it is possible to consider the selection of DBs based on their
initial SoC as another type of decision variable. However, since
snew

b,t is usually small and does not have a significant impact
on the total charging time, we thus assume in the same way
as [16] that it is known a priori to the BCS operator.2

Recall that the SoC of each FB should be larger than or
equal to α. We thus have the following constraint:

αub,t ≤ sb,t ≤ 1,∀b ∈ B,∀t ∈ T ∪ {T}. (4)

Intuitively, inequality (4) guarantees that sb,t is larger than
or equal to α at the time when ub,t = 1. Otherwise, when
ub,t = 0, sb,t is simply bounded between 0 and 1. The initial
SoCs of all batteries loaded in the CBs at time t = 0 are
given by

sb,0 = sinitial
b ,∀b ∈ B, (5)

where we assume without loss of generality that sinitial
b is less

than α. Therefore, ub,0 = 0 holds for all b ∈ B.
We illustrate the SoC transition of a particular CB in Fig. 2.

As can be seen, when ub,4 = ub,9 = 1, the SoC of this CB will
be reinitialized. Meanwhile, according to (4), a battery is eli-
gible to be unloaded only when its SoC is larger than or equal
to α = 0.9; however, the optimal swapping decision highly
depends on the objective function. Note that constraints (1)-(5)
are defined on each CB level, and we thus call them individual
constraints.

2In our simulation, we choose snew
b,t randomly from interval [0, 0.15].

Fig. 2. Illustration of the SoC transitions in CBb when α = 0.9.

2) System-Wide Constraints on All CBs: In addition to the
individual constraints for each CB, we also have two system-
wide constraints coupling all the CBs.

• FB Demand: We denote the number of FBs at time t by
Ft,∀t ∈ T , and assume that the initial number of FBs,
i.e., F0, is known a priori. Therefore, we have

Ft+1 = Ft − dt +
B∑

b=1

ub,t+1,∀t ∈ T , (6)

where
∑B

b=1 ub,t+1 denotes the total number of newly
added FBs at time t + 1. Recall that the total number of
FBs at each time t ∈ T should be no less than the FB
demand dt,

Ft ≥ dt,∀t ∈ T ∪ {T}. (7)

Here, in (7), the additional constraint FT ≥ dT guaran-
tees that at least dT FBs will be preserved at the end of
the control horizon for future use (i.e., the initial num-
ber of FBs for the next scheduling horizon), where dT is
an artificial FB demand determined by the BCS operator
beforehand.

• Transmission Capacity: For every time slot t ∈ T , the
aggregate charging rate plus the non-battery load Lt

should be upper bounded by the transmission capacity
C, i.e.,

B∑

b=1

θrb,t

�T
+ Lt ≤ C,∀t ∈ T , (8)

where the battery capacity θ (in kWh) converts rb,t

denoted as a fraction (no unit, as defined earlier) to the
real-charged energy θrb,t (in kWh). Furthermore, θrb,t is
converted to the real-charged power (in kW) after being
divided by �T . Similar to [17], we assume that all the
batteries in the BCS have the same capacity. However,
the maximum charging rates are allowed to be different.

3) Objective of the BCSS Problem: The objective of the
BCSS problem is to minimize the total charging cost subject
to all the aforementioned constraints (1)-(8). The total charg-
ing cost includes the electricity purchasing cost (EPC) plus
the battery degradation cost (BDC). We assume that the BCS
considered here has no market power and is a pure price taker,
thus the EPC can be represented by

EPC =
B∑

b=1

T−1∑

t=0

ptθrb,t. (9)
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Unlike the EPC, the BDC cannot be simply modeled as a
linear function of the charging rate. As a typical example of
lithium-ion battery technology, LiFePO4 lithium-ion battery
has been widely used in automobile industries [25]. Based on
the degradation model of LiFePO4 lithium-ion battery devel-
oped in [25]–[27] and then further developed by [28], the BDC
can be expressed as

Gb(rb,t) = atr
2
b,t + σtrb,t + ct, (10)

where parameters at, σt, and ct are related to the battery that is
being charged at CBb at time t. Specifically, based on the price
of battery cell ($/kWh) and battery’s internal parameters such
as voltage, current, and SoC, all of these three parameters can
be determined.3 Therefore, the total BDC can be calculated as

BDC =
B∑

b=1

T−1∑

t=0

Gb(rb,t) (11)

Therefore, based on the EPC model and the BDC model, the
BCSS problem can be formally formulated as the following
optimization problem:

(BCSS)

{
min EPC + BDC

s.t. (1) − (8),
(12)

variables: {rb,t}∀b∈B,∀t∈T , {ub,t}∀b∈B,∀t∈T \{0}∪{T}.

A quick observation for Problem (12) is that all constraints
are linear except (2), which consists of multiplication between
continuous and binary decision variables. Moreover, from (4)
we can see that ub,t = 1 is feasible if and only if α ≤ sb,t ≤ 1.
Meanwhile, the SoC transition in (2) shows that sb,t depends
on rb,t′ with t′ ≤ t. Therefore, all the rb,t′ with t′ ≤ t are
strongly coupled with ub,t. The mixed-integer nature, the non-
linearity of the SoC transition, and the strong coupling effect
between the binary and the continuous decision variables make
Problem (12) difficult to solve. The following two sections
aim to present a computationally-tractable algorithm to solve
Problem (12). Before leaving this section, the following two
remarks provide some justification about the generality and
feasibility issue of the BCSS problem.

Remark 1 (Generality of the BCSS Problem): Note that
the BCSS problem is a mixed-integer nonlinear program
(MINLP). In particular, when we adopt the quadratic BDC
model (11) for typical LiFePO4 lithium-ion batteries, the
BCSS problem becomes a mixed-integer quadratic program
(MIQP). Considering the wide application of LiFePO4 in EVs,
we focus on the quadratic BDC model (11) in this paper and
aim to solve the MIQP problem (12) hereinafter. However, it is
worth pointing out that our BCSS problem can be any general
MIP when other nonlinear/linear battery degradation models
are introduced or other application scenarios are considered.4

Meanwhile, our proposed algorithm in the following sections
is independent of the quadratic BDC model, as long as the
objective function of the MINLP problem is convex.

3The detailed expressions for ab,t, σb,t , and cb,t are referred to [28].
4For instance, in addition to the cost minimization model proposed in

Problem (12), the BCS operator can also control the aggregate charging rate
of the BCS to provide grid services such as peak-shaving and/or frequency
regulation service, etc.

Remark 2 (Feasibility of the BCSS Problem): It is possi-
ble that the proposed BCSS problem is infeasible if the FB
demand is very high. However, we consider that this is a plan-
ning problem that should ensure the BCSS problem is feasible
before our proposed scheduling problem. For example, the
BCS operator has to make a feasible commitment with BSSs
such that the total FB demand is within the capability of the
BCS, or the BCS operator has to prepare enough FBs such
that a given FB demand can be satisfied. Since the planning
of a proper BCS is not the focus of this paper, we assume
that the BCSS problem is already feasible and focus on the
scheduling aspect by proposing an efficient algorithm.

III. AN EXACT ALGORITHM BASED ON GBD

In this section, we first show how to transform Problem (12)
into a standard MIQP problem. We then propose to solve the
MIQP problem with the GBD approach.

A. Standard MIQP Representation

We first represent the nonlinear constraint (2) as equivalent
linear constraints. Similar to [29], for any b ∈ B and t ∈
T ∪{T}, we define yb,t = sb,t(1−ub,t) as an auxiliary variable
and rewrite (2) as

sb,t+1 = yb,t + ηbrb,t + snew
b,t ub,t, t ∈ T . (13)

To preserve the equivalence between (13) and (2), the auxiliary
variable yb,0 should be equal to sb,0 since ub,0 = 0 holds for
all b ∈ B. Meanwhile, for all t ∈ T \{0}∪{T}, yb,t must satisfy
the following linear inequalities :

yb,t ≤ yb,t−1 + ηbrb,t−1 + snew
b,t−1ub,t−1, (14a)

yb,t ≥ yb,t−1 + ηbrb,t−1 + snew
b,t−1ub,t−1 − ub,t, (14b)

yb,t ≤ 1 − ub,t, (14c)

yb,t ≥ 0. (14d)

The equivalence between (13)-(14d) and (2) can be checked
as follows: If ub,t = 0, constraints (14a) and (14b) guar-
antee that yb,t = yb,t−1 + ηbrb,t−1 + snew

b,t−1ub,t−1 = sb,t =
sb,t(1 − ub,t), and in this case, constraints (14c) and (14d) are
inactive. Otherwise, if ub,t = 1, constraints (14c) and (14d)
guarantee that yb,t = 0 = sb,t(1 − ub,t), and similarly,
constraints (14a) and (14b) are inactive. Therefore, con-
straints (13)-(14d) are indeed equivalent to (2). By utilizing
this equivalence, we substitute (13) into constraint (4) and
get the following two linear inequality constraints for all
t ∈ T \{0} ∪ {T}:

yb,t−1 + ηbrb,t−1 + snew
b,t−1ub,t−1 ≤ 1, (15a)

yb,t−1 + ηbrb,t−1 + snew
b,t−1ub,t−1 ≥ αub,t. (15b)

After the above transformation, (2) and (4) can be equiva-
lently represented by (14a)-(15b). For compactness, we define
the following vectors to represent the decision variables:
rᵀ

b = (
rb,0, . . . , rb,T−1

)
, yᵀ

b = (
yb,1, . . . , yb,T

)
, and uᵀ

b =
(ub,1, . . . , ub,T),∀b ∈ B. Thus, the above five linear con-
straints (14a)-(14c), (15a), and (15b) can be combined into
one linear constraint as follows:

Abrb + Dbyb + Ebub ≤ fb,∀b ∈ B, (16)



TAN et al.: OPTIMAL SCHEDULING OF BCS SERVING EVs BASED ON BATTERY SWAPPING 1377

where matrices {Ab}∀b∈B, {Db}∀b∈B, and {Eb}∀b∈B, and vec-
tor {fb}∀b∈B can be readily obtained by the corresponding
coefficients in (14a)-(14c), (15a), and (15b). Similarly, we can
represent constraints (6), (7), and (8) as

B∑

b=1

Gbub ≥ d,

B∑

b=1

rb ≤ g, (17)

where matrix Gb consists of only 0 and 1, d = (dt)∀t, and g =(
(C−Lt)�T

θ

)
∀t. Note that the first inequality constraint in (17)

corresponds to (6) and (7), and the second one corresponds
to (8). Therefore, Problem (12) can be finally represented as a
standard MIQP problem with all linear constraints as follows:

min
B∑

b=1

[1

2
rᵀ

b Qbrb + pᵀrb

]
(18a)

s.t. (16) and (17), (18b)

0 ≤ rb ≤ rmax
b , yb ≥ 0, ub ∈ {0, 1}T×1, ∀b ∈ B,

(18c)

variables: rb, yb, ub, ∀b ∈ B, (18d)

where Qb is a diagonal matrix, p is the vector compounded
by θpt�T and the linear term in Gb(rb,t), and rmax

b is a T × 1
vector with all entries equal to rmax

b .
After the above representation, Problem (18) can be directly

solved by commercial solvers such as Gurobi.5 However,
according to our numerical experiment, the computational
time for directly solving Problem (18) with Gurobi 6.5.0 [36]
increases significantly even when B is larger than 50 (details
will be discussed in Section V). Therefore, instead of directly
solving Problem (18) with Gurobi, we will propose a more
efficient algorithm by further exploiting the special structure
of Problem (18). In particular, similar to [30], the GBD algo-
rithm will be applied here and its details will be presented in
the following subsection.

B. The GBD Algorithm

In GBD, Problem (18) is partitioned into a master problem
and a sub-problem. The resulting master problem is solved by
a cutting plane algorithm in which, at each iteration, the binary
variable of the master problem is first determined and the sub-
problem is solved by fixing the binary variable. If the sub-
problem is feasible and bounded, an optimality cut is added
to the master problem; otherwise a feasibility cut is added. An
upper bound can be computed from the feasible sub-problem
and a lower bound can be obtained from the master problem.
The process continues until an optimal solution is found or the
optimality gap is smaller than a given threshold. The whole
framework is presented in the following five steps:
Step-1 (Initialization): Select a convergence

tolerance parameter ε ≥ 0. Set UB = ∞ and LB = −∞. Set

the initial cut coefficients �1
b = �̂

1
b = 0, and �1

b = �̂1
b = 0,

5Note that in this paper we focus on obtaining the exact solution of
Problem (12). Those who are interested in obtaining an approximate solution
with commercial solvers are referred to Appendix A.

∀b ∈ B. Initialize K = 1 and L = 1 to count the numbers of
optimality constraints and feasibility constraints, respectively.
Step-2 (Master Problem): Solve the following

master problem:

min
u,z

z

s.t.
[
�k

1, . . . ,�
k
B

]
u +

B∑

b=1

�k
b ≤ z, ∀k = 1, . . . , K, (19)

[
�̂

	

1, . . . , �̂
	

B

]
u +

B∑

b=1

�̂	
b ≤ 0, ∀	 = 1, . . . , L, (20)

[G1, . . . , GB]u ≥ d, u ∈ {0, 1}T×B, (21)

where uᵀ = (uᵀ
1 , . . . , uᵀ

B). Let (uK, zK) be the optimal
solution, and set LB = zK . Terminate if UB ≤ LB + ε.

As will become clear later on, constraint (19) denotes the set
of optimality cuts, which will push the lower bound LB closer
to the optimal objective value of Problem (18). Meanwhile,
constraint (20) represents the set of feasibility cuts, which
will make uK more feasible for the sub-problem defined in
Problem (22). In each iteration, the master problem will have
a solution that is greater than or equal to the solution of the
previous iteration (i.e., the sequence of LB is non-decreasing).
This is because constraints (19) and (20) will keep shrinking
the space for searching u with the increase of K and L.
Step-3 (Sub-problem): Given uK from Step-2,

Problem (18) reduces to a continuous optimization problem
defined on rb and yb,∀b ∈ B as follows:

Fsub(uK) = min
rb,yb

B∑

b=1

[1

2
rᵀ

b Qbrb + pᵀrb

]
(22a)

s.t. Abrb + Dbyb ≤ fb − EbuK
b ,∀b ∈ B,

(22b)
B∑

b=1

rb ≤ g, (22c)

0 ≤ rb ≤ rmax
b , yb ≥ 0,∀b ∈ B. (22d)

Problem (22) is often referred to as the Bender’s sub-
problem, or sub-problem for short [31], [32]. Determination of
whether Problem (22) is feasible or not for a given uK can be
done by any Phase I algorithm. In particular, Floudas et al. [32]
proposed to solve the following linear programming problem:

Ffc(uK) = min
rb,yb,δb

B∑

b=1

eᵀδb (23a)

s.t. Abrb + Dbyb ≤ fb − EbuK
b + δb,∀b ∈ B,

(23b)
B∑

b=1

rb ≤ g, (23c)

0 ≤ rb ≤ rmax
b , yb ≥ 0, δb ≥ 0,∀b ∈ B,

(23d)

where e = (1, 1, . . . , 1)ᵀ. Specifically, the feasibility of the
sub-problem can be checked as follows: If Ffc(uK) = 0, uK is
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feasible for the sub-problem. Otherwise, if Ffc(uK) > 0, the
sub-problem is infeasible. Depending on the feasibility of the
sub-problem, we have the following two steps.
Step-4 (Optimality Cuts): If the sub-

problem (22) is feasible, let {rK
b }∀b be its optimal primal

solution and let Fsub(uK) be the optimal objective value.
Furthermore, we dualize constraint (22b) with Lagrange
multiplier {λb}∀b and let {λK

b }∀b be the optimal dual solution.
Note that the sub-problem is a convex optimization problem
and constraint (22b) is separable in rb and uK

b . Therefore,
based on the standard convex optimization theory, Fsub(uK)

can be given as

Fsub
(
uK) =

[
�K+1

1 , . . . ,�K+1
B

]
uK +

B∑

b=1

�K+1
b , (24)

where the two coefficients �K+1
b and �K+1

b are computed
based on the optimal primal and dual variables as

�K+1
b = 〈

λK
b , Eb

〉
,∀b ∈ B, (25)

�K+1
b = 1

2

(
rK

b

)ᵀ
QbrK

b + pᵀrK
b +

〈
λK

b , AbrK
b + DbyK

b − fb
〉
,∀b ∈ B. (26)

We store (uK, (rK
b )∀b) as the incumbent if Fsub(uK) is less

than UB, and update the upper bound UB = Fsub(uK). If
UB ≤ LB + ε, then we can claim that (uK, (rK

b )∀b) is the
optimal solution for Problem (18) and terminate. Otherwise,
increase K by 1 and go to Step-2.
Step-5 (Feasibility Cuts): If the sub-

problem (22) is infeasible, then the feasibility cuts must be
added to the master problem. In particular, let {r̂L

b}∀b, {ŷL
b}∀b,

and {δL
b}∀b be the optimal primal solution for Problem (23),

and let {λ̂L
b}∀b be the optimal dual solution associated with

constraint (23b). Since Problem (23) is a linear program, its
optimal objective value Ffc(uK) is equivalent to the optimal
objective value of its dual problem written as follows:

Ffc(uK) = [
�̂

L+1
1 , . . . , �̂

L+1
B

]
uK +

B∑

b=1

�̂L+1
b , (27)

where the coefficients can be computed as

�̂
L+1
b =

〈
λ̂

L
b, Eb

〉
,∀b ∈ B, (28)

�̂L+1
b =

〈
λ̂

L
b, Abr̂L

b + DbŷL
b − fb

〉
,∀b ∈ B. (29)

After calculating the above two coefficients, increase L by 1
and go to Step-2.

According to [31], the upper bound UB and the lower bound
LB will eventually converge to the same point if the optimal
solution is found, or become extremely close to each other
if the ε-optimal solution is located.6 It is worth pointing out
that after performing the linearization in Section III-A, con-
straint (22b) is separable between uK

b and rb, and linear in
uK

b . As a result, both the optimality cuts (19) and the feasi-
bility cuts (20) can be expressed as linear functions of uK

b .

6Note that as we mentioned in Step-2, the sequence of LB is non-
decreasing. However, the sequence of the upper bound UB is not necessarily
to be non-increasing. More detailed explanation is referred to in [31].

Therefore, the master problem remains as a mixed-integer lin-
ear programming (MILP) problem (with only one continuous
decision variable z). Transforming the original MIQP problem
into a series of MILP problems can significantly save the com-
putational time, as demonstrated by our simulation results in
Section V.

Note that in Step-4, we need to solve sub-problem (22)
to obtain the optimal primal variable (rK

b )∀b as well as solve
its dual problem to obtain the optimal dual variable (λK

b )∀b.
Solving both the primal and dual of the sub-problem with
generic convex optimization solvers is definitely feasible.
However, since we need to iteratively solve the sub-problem,
solving this problem in an accurate and efficient way is critical
to the overall performance of the GBD method. Therefore, in
the next section, we will propose an efficient parallel algorithm
for solving the sub-problem.

IV. SOLVING SUB-PROBLEM (22) IN PARALLEL

In this section, we leverage the special decomposable struc-
ture of the BCSS problem and propose an efficient parallel
algorithm for solving sub-problem (22). Our parallel algo-
rithm consists of two key procedures: i) the sub-problem is first
decomposed into multiple individual sub-problems at each CB
level based on dual decomposition (Section IV-A), and ii) each
individual sub-problem is further partitioned into multiple
independent simple optimization problems (Section IV-B).
However, as some of the constraints are eliminated dur-
ing the decomposition and partition processes, and thus we
further need to synthesize all the required dual variables
associated with these constraints for calculating the optimal-
ity cuts (Section IV-C). Lastly, we will discuss the parallel
implementation of our algorithm in Section IV-D.

A. Dual Decomposition of the Sub-Problem

Note that if we relax constraint (22c) with Lagrange
multiplier π , then all the CBs are decoupled. Specifically,
we have the Lagrange function L(r, y, uK,π) =∑B

b=1
∑T−1

t=0

[
Gb(rb,t) + ptθrb,t�T + πtrb,t

] − ∑T−1
t=0 πtgt,

and thus the dual function can be written as
G(π) = min

r,y
L(r, y, uK,π) = ∑B

b=1 Sb(π) − 〈π , g〉,
where Sb(π) is the optimal objective value for the following
individual sub-problem (I-Sub)7

(I − Sub) : min
rb,yb

T−1∑

t=0

[
Gb(rb,t) + (ptθ�T + πt)rb,t

]

s.t. yb,t+1 ≤ yb,t + ηbrb,t + snew
b,t uK

b,t,∀t ∈ T , (λ1,b,t)

yb,t+1 ≥ yb,t + ηbrb,t + snew
b,t uK

b,t − uK
b,t+1,∀t ∈ T , (λ2,b,t)

yb,t ≤ 1 − uK
b,t,∀t ∈ T ∪ {T}, (λ3,b,t)

yb,t + ηbrb,t + snew
b,t uK

b,t ≤ 1,∀t ∈ T ∪ {T}, (λ4,b,t)

yb,t + ηbrb,t + snew
b,t uK

b,t ≥ αuK
b,t+1,∀t ∈ T ∪ {T}, (λ5,b,t)

0 ≤ rb,t ≤ rmax
b , yb,t+1 ≥ 0,∀t ∈ T ,

7By individual, we mean this optimization problem is defined at each
individual CB level.
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where the first five constraints correspond to constraint (22b)
or equivalently (14a)-(14c) and (15a)-(15b), and the last
one constraint corresponds to constraint (22d). Note that
λ1,b,t, . . . , λ5,b,t are the respective dual variables associated
with each corresponding constraint. Meanwhile, these five dual
variables are the respective entries of λb defined in Step-4,
i.e., λb = (λ1,b,t, . . . , λ5,b,t)∀t.

The dual problem of the I-Sub problem is

max
π

G(π), s.t. π ≥ 0, (30)

and the update of π at iteration n can follow the projected
gradient method:

π(n + 1) =
[
π(n) + σ

(
B∑

b=1

rb(n) − g

)]+
. (31)

Since the I-Sub problem is a convex optimization problem, the
Lagrange multiplier π is guaranteed to converge to the optimal
solution, as long as the step-size σ is sufficiently small.

B. Partition of the I-Sub Problem and Its Equivalent Form

Once uK is given, the I-Sub problem can be automatically
decomposed into a series of smaller optimization problems
defined on different charging cycles. For instance, Fig. 3 illus-
trates one charging cycle that starts from t = t1 and finishes
at t = t2, where t1 and t2 are two consecutive time instants
with uK

b,t1
= uK

b,t2
= 1. Intuitively, the I-Sub problem defined

within [t1, t2) is completely independent of the I-Sub problem
defined within other charging cycles. For a given π(n) at
iteration n, the I-Sub problem defined within the charging
cycle exemplified in Fig. 3 can be written as

(OC − I − Sub) : min
t2−1∑

t=t1

[
Gb(rb,t) + (

ptθ�T + πt(n)
)
rb,t

]

s.t. snew
b,t1

+
t2−1∑

t=t1

ηbrb,t = α, (βb,t1) (32a)

0 ≤ rb,t ≤ rmax
b ,∀t ∈ {t1, . . . , t2 − 1}, (32b)

where βb,t1 in the parentheses of (32a) denotes the dual vari-
able associated with the equality constraint.8 We refer to the
above optimization problem as the one-cycle I-Sub (OC-I-
Sub) problem since it is defined within only one charging
cycle.

Note that when t ∈ [t1, t2), the OC-I-Sub problem is equiv-
alent to the I-Sub problem but contains fewer constraints and
variables. Therefore, it is more efficient to solve the OC-I-Sub
problem instead of solving the I-Sub problem. By updating
π according to (31) and solving the OC-I-Sub problem for
all charging cycles in an iterative manner, we can obtain the
optimal charging rate {rK

b }∀b, which is required by Step-4
in the GBD algorithm. However, since the auxiliary deci-
sion variable {yb}∀b is eliminated in the OC-I-Sub problem,

8Note that rb,t is always non-negative (i.e., no discharging is allowed) and
the objective function of the I-Sub problem is monotonic in rb,t . Therefore,
the constraint dualized by λ5,b,t in the I-Sub problem must be binding if
uK

b,t+1 = 1,∀t ∈ T . As a result, once uK
b is given, we can represent the first

five constraints in the I-Sub problem as an equality constraint shown in (32a).

Fig. 3. Illustration of one charging cycle between t1 and t2.

we thus need to reproduce its optimal value {yK
b }∀b based

on {rK
b }∀b. Note that this is a light-weight task since we

only need to perform some basic linear algebraic calculations
based on the SoC transition equation (2) and the equation
yK

b,t = sK
b,t(1 − uK

b,t),∀b ∈ B.

C. Synthesis of λK for Calculating the Optimality Cuts

In the above two subsections, we already obtained
the optimal primal variables {rK

b }∀b and {yK
b }∀b for sub-

problem (22). However, in order to calculate the optimality
cuts in (25) and (26), we also need the optimal dual vari-
able {λK

b }∀b. Unfortunately, solving the dual of the OC-I-Sub
problem can only give the dual variable {βK

b,t1
}∀b for the

charging cycle within [t1, t2). Therefore, we further need to
synthesize {λK

b }∀b from {βK
b,t1

}∀b.
Recall that λK

b = (λK
1,b,t, . . . , λ

K
5,b,t)∀t. Based on the relation-

ship between the I-Sub problem and the OC-I-Sub problem,
we can synthesize the detailed entries of λK

b as follows:
• λK

1,b,t and λK
2,b,t can be any non-negative solution that

satisfies λK
1,b,t − λK

2,b,t = βK
b,t1

· I{uK
b,t+1=0}, ∀t ∈ {t1, . . . ,

t2 − 1}.
• λK

3,b,t = βK
b,t1

· I{uK
b,t=1}, ∀t ∈ {t1, . . . , t2 − 1}.

• λK
4,b,t = 0, ∀t ∈ {t1, . . . , t2 − 1}.

• λK
5,b,t = βK

b,t1
· I{uK

b,t+1=1}, ∀t ∈ {t1, . . . , t2 − 1}.
Here, we only show the synthesis within the charging cycle

[t1, t2) exemplified in Fig. 3, and omit the other charging
cycles due to their similarity. The correctness of the above
synthesis is shown in Appendix B.

D. Algorithm Illustration and Parallel Implementation

We illustrate the GBD algorithm with dual decomposi-
tion and the partition manipulation in Fig. 4. Note that the
I-Sub problems can be solved in parallel among all the CBs.
Moreover, the multiple OC-I-Sub problems corresponding to
each I-Sub problem can also be solved in parallel. Therefore,
given π(n) at iteration n, calculating the dual function in (30)
reduces to solving multiple independent OC-I-Sub problems
in a highly parallel fashion.

V. SIMULATION RESULTS

In this section, we validate our optimization model and
algorithm with real data simulation. We focus on a one-
day scheduling horizon with one hour per slot. We assume
Gb(rb, t) = ar2

b,t, where coefficient a = 5 unless otherwise
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Fig. 4. Illustration of the GBD with dual decomposition and partition.

TABLE I
PARAMETERS OF THE BCS

specified.9 The non-battery load Lt and the day-ahead electric-
ity price pt are from NYISO [34], and are plotted in Fig. 5. The
parameters of the BCS are listed in Table I, where the battery
parameters are from the Nissan Leaf [35]. As we mentioned
before, the initial SoC for all CBs and the SoC for all newly
loaded DBs are randomly drawn from [0, 0.15]. Meanwhile,
as listed in Table I, F0 = 50. For the FB demand, we set
d6 = d14 = d20 = 50 and dt = 0 for t ∈ T \{6, 14, 20}.
Furthermore, we set dT = 50, which guarantees that at least
50 FBs will be preserved as the initial number of FBs for the
following scheduling horizon. We solve the master problem via
Gurobi 6.5.0 [36] and solve the OC-I-Sub problem via CVX
2.1 [37]. To implement our proposed algorithm in parallel, we
leverage the embedded parfor function of the MATLAB
Parallel Computing Toolbox [38]. All the algorithms in this
paper are implemented in MATLAB R2015a on an Intel Core
i7-4770K Haswell 3.5GHz CPU, 16G RAM PC.

1) Impact of Battery Degradation on Charging Smoothness:
We first show the impact of the batteries’ degradation cost on
the charging strategy. Specifically, in Fig. 6(a), we set a = 0,
which means that the battery degradation cost is neglected.
In this case, the charging profile is completely influenced
by the price fluctuation. Therefore, the charging profiles in

9The calculation of the exact BDC function is referred to [26] and [28].
Here in our simulation a = 5 roughly means the price of battery cell is
around $430 per kWh for all the batteries. However, it should be noted that
the average price of battery cell is falling every year [33].

10The usable capacity of the Nissan Leaf is around 21.3 kWh according
to [35], and thus α is roughly around 0.9.

Fig. 5. The non-battery load and electricity price in 1-hour granularity.

Fig. 6. Comparison between the optimal charging profiles when battery
degradation cost increases from the leftmost figure to the rightmost figure.

Fig. 7. Illustration of the total load and the total battery load with different
transmission capacities.

Fig. 6(a) shows a rapid fluctuation. In comparison, when the
battery degradation cost is taken into account, the optimal
charging strategy tends to be much smoother, as shown in
Fig. 6(b). Meanwhile, following our intuition, the charging
profile becomes almost linear if the battery degradation cost
is very high, as shown in Fig. 6(c). Therefore, if the batter-
ies’s capital cost is very high, the BCS operator does not need
to adjust the charging rate of each CB to exploit the price
fluctuation. In contrast, with the decreasing of the batteries’
capital cost in the future, the BCS operator will have better
opportunities in the dynamic electricity market. Note that the
optimal decision is to always swap out the FB once it reaches
the minimum SOC threshold α = 0.9.

2) Impact of Transmission Capacity on Charging Behavior:
Fig. 7 illustrates the impact of the transmission capacity on
the total load and the total battery load. As we can see from
Fig. 7(a), the maximum total load is strictly upper bounded by
the transmission capacity C = 1070 kW during time interval
[9, 22]. As a result, the total battery load is still high during
time interval [8, 11] even though the electricity price around
this period is high, as shown by the curve with circles in
Fig. 7(b). In comparison, when the transmission capacity is
always enough to support all the CBs, as shown by the curve
with diamonds in Fig. 7(b), the optimal charging strategy shifts
the battery load in [8, 11] to time interval [12, 16], which thus
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Fig. 8. Impact of C and B on the total cost.

reduces the total charging cost by exploiting the low price (see
Fig. 5(b)). Therefore, the transmission capacity can greatly
determine the BCS operator’s capability of exploiting the price
fluctuations.

3) Sensitivity Analysis of the Charging Cost to C and B:
To further show the impact of the transmission capacity on the
total cost, we calculate the optimal total cost when the trans-
mission capacity varies from C = 1100 kW to C = 1200 kW
with B set to 50. As we can see from Fig. 8(a), the total
cost decreases from 37.9 dollars when C = 1100 to 36.1 dol-
lars when C ≥ 1180. Therefore, increasing the transmission
capacity by 80 kW can bring 5% reduction in the total cost. In
addition to the transmission capacity, another important param-
eter for the BCS is the total number of CBs, i.e., the value
of B. It is intuitive that the charging cost will decrease if we
have more CBs. However, what remains unclear is how sensi-
tive the charging cost is to the value of B. Therefore, we plot
the optimal charging costs of the BCS when B varies from 50
to 90 with C set to 1070 kW in Figure 8(b). As we can see,
the charging cost decreases from 38.32 dollars when B = 50
to 25.58 dollars when B ≥ 85, which demonstrates over 33%
improvement.

Based on the comparison between Fig. 8(a) and Fig. 8(b),
it is clear that the charging cost is much more sensitive to B
than to C. However, it is incorrect to claim that it is always
more beneficial to have more CBs than to have higher trans-
mission capacity. This is because the net improvement of the
charging cost heavily relies on the marginal costs of increas-
ing C and B. In practice, the marginal cost of increasing C
is complex, and is related to the capital cost of the transmis-
sion cable, the locational marginal price obtained from the
underlying optimal power flow problem, etc. In comparison,
the marginal cost of increasing B is relatively simpler and
depends only on the infrastructure cost (chargers and cables,
etc.). In summary, to reduce the charging cost, it requires a
careful calculation before making any further investment on
whether to increase B or C.

4) Convergence and Efficiency Illustration: Fig. 9 demon-
strates the convergence and efficiency of our proposed decom-
position algorithm. As shown in Fig. 9(a), when B = 10, our
algorithm converges to the optimality in 11 iterations. Fig. 9(b)
shows that when B = 50, our algorithm needs around 100
iterations to achieve the ε-optimality, where we set ε = 10−3.
Note that the sequence of LB is always non-decreasing. This is
because the master problem is a minimization problem and
in each iteration, one extra constraint will be added to the
master problem no matter whether the sub-problem is feasi-
ble or not. In comparison, Benders decomposition does not

Fig. 9. Convergence and CPU time of the proposed algorithm.

guarantee that the sequence of UB has a similar monotonic
property, and this can be observed from Fig. 9(a) and (b) that
the sequences of UB are indeed not monotonic. However, the
sequence of the updated upper bounds UB can be forced to
be monotonically non-increasing as long as we always keep
the lowest upper bound. It should be noted that the conver-
gence of the algorithm will be the same no matter whether
the update of UB is forced to be monotonic or not [31], [32].
To show the scalability of our proposed algorithm, Fig. 9(c)
shows the runtime comparison between our proposed algo-
rithm and Gurobi in solving large-scale BCSS problems. As
shown in Fig. 9(c), when B = 25 and B = 50, the runtimes
of Gurobi and our proposed algorithm are almost the same.
However, our proposed algorithm outperforms Gurobi when
B > 50. In particular, when B = 200, our proposed algorithm
reduces the runtime of Gurobi by almost a half.

Based on our computational experiment, we observe that if
the coupling effects between binary variables and continuous
variables are very strong, and the Benders subproblem hap-
pens to have very good and special properties (e.g., partially
or fully separable, analytical solution, etc.), then it is highly
likely that the algorithm will be very efficient. Our BCSS
problem is exactly like this case. Once the binary variables
are fixed, the Benders subproblem can be decomposed into
multiple identically-structured individual subproblems, namely
the one-cycle individual subproblem (OC-I-Sub) illustrated
in Fig. 3. In summary, it is the strong separability of the
Benders subproblem and the parallel computation that ensure
the efficiency of our algorithm, as demonstrated in Fig. 9.

VI. CONCLUSION

This paper has studied the BCSS problem, whose main task
is to find the cost-minimal scheduling strategy such that the FB
inventory can satisfy the FB demand. We formulate the BCSS
problem as an mixed-integer program and then solve this
problem by the GBD algorithm. The salience of the proposed
algorithm is that i) each charging bay can solve its own sub-
problem in a parallel fashion, and ii) each subproblem can be
further decomposed into multiple independent quadratic pro-
gramming problems, and thus the algorithm facilitates an effi-
cient parallel implementation. Real data simulation has been
presented to validate the proposed model and demonstrates the
efficiency of the proposed algorithm.

The investigated BCSS problem can be extended in many
directions in future. For instance, when there exist multiple
geographically-distributed BCSs, how to perform the joint
optimization of the high-level charging scheduling and the
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bottom-level optimal power flow problem is an interesting
question. Moreover, battery-to-grid service (via discharging)
is a very important application that has not been discussed in
this paper.

APPENDIX A
AN APPROXIMATE SOLUTION

We note that for general applications in industry, large-
scale MINLP models are often approximated and optimized as
MILP problems for commercial solvers, e.g., CPLEX, Gurobi.
Towards this end, in this Appendix, we propose an approxi-
mate MILP model for the BCSS problem. According to our
simulation, the approximation here facilitates a computational-
tractable MILP model with acceptable solution for practical
systems. Specifically, according to Jensen’s inequality, we have

BDC =
B∑

b=1

T−1∑

t=0

(
atr

2
b,t + σtrb,t + ct

)
(33)

≥
T−1∑

t=0

atR2
t

B
+

T−1∑

t=0

σtRt +
T−1∑

t=0

Bct, (34)

where Rt is the aggregate charging rate defined as

Rt �
B∑

b=1

rb,t, (35)

and the equality in (34) is achieved when rb,t = rb′,t for all
b, b′ ∈ B, ∀t ∈ T . Considering the fact that most of the DBs
are close to be empty and CBs tend to be homogeneous, it is
thus reasonable to approximate the objective of Problem (12)
by f (R) as follows

f (R) =
T−1∑

t=0

(
atR2

t

B
+

(
ptθ + σt

)
Rt + Bct

)
, (36)

where R = (Rt)
T−1
t=0 . Therefore, we get the approximate ver-

sion of the BCSS problem, which we call it as BCSS-A, as
follows:

(BCSS-A) min f (R) s.t. (1)−(8), and (35).

The BCSS-A problem facilitates a computationally-tractable
MILP model when we further approximate f (R) as a piece-
wise linear (PWL) cost function. Note that the objective of
the BCSS problem has B×T quadratic terms while f (R) only
involves T quadratic terms. Therefore, we can significantly
reduce the number of auxiliary variables when we implement
the PWL objective in commercial solvers such as Gurobi.11

We compare both the cost and computational performance
of the MIQP model and the approximate MILP model in
Table II.12 Specifically, we choose the same parameter set-
ting as Fig. 8(b) and vary B from 50 to 90 to gradually

11There exist multiple suitable techniques such as Special Ordered Sets of
Type Two (SOS2) to implement the PWL objective. Some commercial solvers
have built-in PWL objective and constraints support (e.g., Gurobi 6.5.0 [36]).

12Note that the cost performance of the approximate MILP model is not
its objective value. Instead, it is the real charging cost (including both EPC
and BDC) by substituting the charging scheduling results obtained from the
approximate MILP model into the objective of the original BCSS problem.

TABLE II
PERFORMANCE COMPARISON BETWEEN MIQP AND MILP

increase the scale of the system. Both the MIQP model and
the approximate MILP model are solved by Gurobi 6.5.0 in
MATLAB R2015a on an Intel Core i7-4770K Haswell 3.5GHz
CPU, 16G RAM PC. In particular, the PWL objective in the
approximate MILP model is implemented by the built-in PWL
objective support in Gurobi 6.5.0 with 20 line segments. As
shown by Table II, the cost performance of the approximate
MILP model is close to the exact MIQP model (less than
6.5% gap). However, the CPU time of solving the approxi-
mate MILP model is significantly less than that of the MIQP
model.

Note that the performance of our proposed approximate
MILP model can be affected by many factors such as the het-
erogeneity of batteries and the tightness of the transmission
capacity (larger C means less coupling among CBs, and thus
the performance of the approximate MILP model becomes bet-
ter, and vise versa). Therefore, the approximate MILP model
in this Appendix just serves as a proof of concept for applying
approximation techniques to our BCSS problem.

APPENDIX B
SYNTHESIS OF THE DUAL VARIABLE

The OC-I-Sub problem is equivalent to the following
optimization problem if we relax constraint (32a) with the
optimal multiplier βK

b,t1
:

min
t2−1∑

t=t1

[
Gb(rb,t) + (ptθ�T + πt(n))rb,t

]

−
t2−1∑

t=t1

βK
b,t1ηbrb,t + βK

b,t1

(
α − snew

b,t1

)
(37a)

s.t. 0 ≤ rb,t ≤ rmax
b ,∀t ∈ {t1, . . . , t2 − 1}. (37b)

Similarly, Problem I-Sub is equivalent to the following
optimization problem if we relax its first five and the last
constraints with their respective optimal multipliers:

min
t2−1∑

t=t1

[
Gb(rb,t) + (ptθ�T + πt)rb,t

]

+ (
λK

1,b,t1 − λK
2,b,t1

)(
yb,t1+1 − yb,t1 − ηbrb,t1 − snew

b,t1

)

+
t2−2∑

t=t1+1

(λK
1,b,t − λK

2,b,t)
(
yb,t+1 − yb,t − ηbrb,t

)

+ λK
3,b,t1yb,t1 − λK

5,b,t2−1

(
yb,t2−1 + ηbrb,t2−1 − α

)

−
t2−1∑

t=t1

γ K
b,t+1yb,t+1 (38a)

s.t. 0 ≤ rb,t ≤ rmax
b ,∀t ∈ {t1, . . . , t2 − 1}, (38b)
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where γ K
b,t+1 denotes the optimal multiplier associated with

the last constraint of Problem I-Sub. Note that we elimi-
nate the constraint associated with λK

4,b,t since λK
4,b,t = 0

always holds. We can also eliminate the last term in (38a)
since

∑t2−1
t=t1 γ K

b,t+1yb,t+1 = 0 always holds. Let us temporarily
ignore the first term in (38a) and rearrange the order of the
remaining terms as

λK
3,b,t1yb,t1 + (λK

1,b,t1 − λK
2,b,t1)

(
yb,t1+1 − yb,t1

)

+
t2−2∑

t=t1+1

(λK
1,b,t − λK

2,b,t)
(
yb,t+1 − yb,t

) − λK
5,b,t2−1yb,t2−1

− (
λK

1,b,t1 − λK
2,b,t1

)
ηbrb,t1 −

t2−2∑

t=t1+1

(
λK

1,b,t − λK
2,b,t

)
ηbrb,t

− λK
5,b,t2−1ηbrb,t2−1 + λK

5,b,t2−1α − (
λK

1,b,t1 − λK
2,b,t1

)
snew

b,t1
.

(39)

Note that if λK
1,b,t − λK

2,b,t = λK
3,b,t1

= λK
5,b,t2−1 = βK

b,t1
,

∀t ∈ {t1, . . . , t2 −2}, (39) can be equivalently simplified to the
following formula

−
t2−1∑

t=t1

βK
b,t1ηbrb,t + βK

b,t1(α − snew
b,t1

), (40)

which is the same as the last two terms in the objective func-
tion of Problem (37). Therefore, the optimal dual variable λK

b
can indeed be synthesized according to the following method:

• λK
1,b,t and λK

2,b,t can be any non-negative solution that
satisfies λK

1,b,t−λK
2,b,t = βK

b,t1
·I{uK

b,t+1=0}, ∀t ∈ {t1, . . . , t2−
1}.

• λK
3,b,t = βK

b,t1
· I{uK

b,t=1}, ∀t ∈ {t1, . . . , t2 − 1}.
• λK

4,b,t = 0, ∀t ∈ {t1, . . . , t2 − 1}.
• λK

5,b,t = βK
b,t1

· I{uK
b,t+1=1}, ∀t ∈ {t1, . . . , t2 − 1}.

For other charging cycles, e.g., a charging cycle that starts
from t = t′1 and ends at t = t′2, we will obtain another optimal
dual variable βK

b,t′1
, and the same approach can be applied to

synthesize λK
b within this charging cycle. After visiting all the

charging cycles, all the entries of λK
b can be synthesized.
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