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Abstract—In this paper, we investigate optimal management
of local energy trading in future smart micro-grid (SMG) via
pricing. In SMG, energy consumers and providers, in addition
to trading with utility company, can also perform local ener-
gy trading controlled by a local trading manager (LTM) for
reaping benefits. We first quantify the benefits achieved by the
consumers and providers from local trading and then formulate
a two-layered optimization framework to investigate i) how the
energy consumers and providers maximize their benefits via
appropriately adjusting their local trading decisions in response
to the LTM’s pricing, and ii) how the LTM adjusts its price in
local market to benefit the consumers and providers as much as
possible while guaranteeing a required gain for itself. We propose
two algorithms to solve the layered optimization problem and
perform numerical experiments with practical data set to validate
the proposed local trading model and the algorithms.

I. INTRODUCTION

With a rapid growth in exploiting distributed energy re-
sources (DERs) such as solar panels and micro-turbines, the
paradigm of smart micro-grid (SMG) that facilitates local
energy-transfers from DERs to neighboring energy consumers
has attracted lots of interests [1], [2]. The SMG has been
considered a promising approach that not only can efficiently
utilize DERs but also can coordinate DERs and energy con-
sumers to benefit macro-grid (e.g., smoothing energy demand
profile and reducing demand congestion). In particular, the
SMG is in line with the emerging concept of ElectriNet
[3], where the energy users, in addition to trading with the
utility companies in macro-gird, can form local energy-transfer
networks for potential energy trading opportunities.

Realizing the merits of the SMG, however, necessitates a
careful control of the energy trading between energy providers
and consumers as well as the economic reward optimization
associated with the trading. In [4], the authors investigated
the energy-transfer between two energy users in an islanded
micro-grid to minimize their total energy generation cost.
In [5], the authors studied the distributed energy generation
of multiple micro-grids for their social welfare optimization.
In [6], the authors investigated the distributed charging and
discharging for a group of electric vehicles in micro-grid.
Market model has been commonly adopted for managing
the energy consumption in SMG as well as smart grid. In
[7], the authors proposed two different market models for
demand response management. In [8], the authors proposed a
vehicle-to-grid market model for providing frequency control
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service. In [9], the authors investigated the bilateral energy
trading with the utility company in smart grid. Meanwhile,
different layered market models have been proposed in [10],
[11] for investigating the competitive consumption scheduling
of energy users and the pricing of the utility companies.

Different from these previous works, we propose a novel
SMG model where the energy consumers and distributed
energy providers can perform local energy trading controlled
by a local trading manager (LTM). The LTM adjusts its local
energy price, different from the price of the utility company,
to control the local trading for benefiting the energy providers,
consumers as well as itself. In particular, we first quantify the
benefits of the consumers and providers from local trading.
Then, we formulate a two-layered optimization framework
comprised of i) a bottom-layer optimization that models how
the energy consumers and providers appropriately adjust their
energy trading decisions in the local market in response to the
LTM’s price, and ii) a top-layer optimization that models how
the LTM controls its price to benefit the energy consumers and
providers as much as possible while guaranteeing a required
gain for itself. We propose two algorithms to solve the layered
optimization and validate the local trading model and the
algorithms via numerical experiments.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. SMG Model with Local Trading

We consider a SMG consisting of two types of energy users,
i.e., a group of energy buyers (EBs) and a group of energy
sellers (ESs). Let Ωb = {1, 2, ..., Nb} denote the group of the
EBs, in which each EB i ∈ Ωb requires a fixed energy demand
di within a certain period (e.g., one hour). Meanwhile, let
Ωs = {1, 2, ..., Ns} denote the group of the ESs, in which
each ES j ∈ Ωs has a given energy-output õj to sell. In
the SMG, each EB is connected to both an external utility
company (EUC) and a local trading market managed by the
LTM. To meet its energy demand, each EB can buy energy
from both the EUC (whose sell-out price is pout) and the LTM
(whose sell-out price is qout). Similarly, each ES is connected
to both the EUC and the LTM, and it can sell its energy-output
to both the EUC (whose buy-back price is pback) and the LTM
(whose buy-back price is qback).

For each EB i ∈ Ωb, we use xi to denote the energy it buys
from the EUC, and use yi to denote the energy it buys from
the LTM. To meet its energy demand, each EB i requires:

xi +
(
yi − fi(yi)

) ≥ di, ∀i ∈ Ωb, (1)
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where function fi(yi) denotes the energy transmission loss
when EB i acquires yi from the LTM. Because of the pricing
of the EUC and the LTM, EB i’s energy acquisition cost is

Ci(xi, yi) = xipout + yiqout, ∀i ∈ Ωb. (2)

Compared to a benchmark case without the local trading, the
saving of EB i when it can trade with the LTM is

Gi(xi, yi) = Ci(di, 0)− Ci(xi, yi)

= pout(di − xi)− qoutyi, ∀i ∈ Ωb, (3)

which can be considered as the net gain of EB i from
performing the local trading. In particular, each EB i usually
requires a nonnegative net gain, i.e., requiring

Gi(xi, yi) ≥ 0, ∀i ∈ Ωb. (4)

Meanwhile, for each ES j ∈ Ωs, we use x̃j to denote its
energy sold to the EUC and use ỹj to denote its energy sold
to the LTM. Limited by its energy output õj , ES j requires

x̃j +
(
ỹj + f̃j(ỹj)

) ≤ õj , ∀j ∈ Ωs, (5)

where function f̃j(ỹj) denotes the energy transmission loss
when ES j sells ỹj to the LTM. Because of the pricing of the
EUC and the LTM, the total income of each ES j is

Ij(x̃j , ỹj) = pbackx̃j + qbackỹj , ∀j ∈ Ωs. (6)

Compared to a benchmark case without the local trading, the
increased income of ES j when it can trade with the LTM is

G̃j(x̃j , ỹj) = Ij(x̃j , ỹj)− Ij(d̃j , 0)

= pback
(
x̃j − d̃j

)
+ qbackỹj , ∀j ∈ Ωs, (7)

which can be considered as the net gain of ES j. In particular,
each ES j requires a non-negative net gain, i.e., requiring

G̃j(x̃j , ỹj) ≥ 0, ∀j ∈ Ωs. (8)

In this work, we assume that the utility company’s prices
(pout, pback) are fixed. We focus on investigating how the LTM
controls its prices (qout, qback) to motivate the local energy
trading between the EBs and ESs to maximize their benefits.
The details are presented below as a two-layered optimization.

B. Problem Formulation as a Two-Layered Optimization

1) Bottom-Layer Optimization for Energy Trading Deci-
sions: In the bottom-layer, given the LTM’s prices (qout, qback),
the EBs and ESs determine their respective energy trading
decisions by solving the following optimization problem:

(P1-Bottom): H (qout, qback) =

max
∑
i∈Ωb

Ui(Gi(xi, yi)) +
∑
j∈Ωs

Ũj(G̃j(x̃j , ỹj)),

subject to: Constraints (1), (4), (5), and (8),∑
i∈Ωb

yi =
∑
j∈Ωs

ỹj , (9)

decision variables: {xi, yi}i∈Ωb
and {x̃j , ỹj}j∈Ωs .

In (P1-Bottom), (9) ensures the energy balance at the LTM,
i.e., the total energy it buys from the ESs should be equal
to the total energy it sells to the EBs. In the objective

function, Ui(Gi(xi, yi)) measures the satisfaction of EB i for
its achieved net gain Gi(xi, yi), and Ũj(G̃j(x̃j , ỹj)) measures
the satisfaction of ES j for its achieved net gain G̃j(x̃j , ỹj).
The bottom problem means that the EBs and ESs adjust their
energy trading decisions to maximize their total satisfaction
perceived1, under the given prices (qout, qback) of the LTM.

We use H(qout, qback) to denote the optimal value of (P1-
Bottom) under the given (qout, qback) and use {xbr

i , y
br
i }i∈Ωb

and {x̃br
j , ỹ

br
j }j∈Ωs to denote the corresponding optimal en-

ergy trading decisions of the EBs and ESs in response to
(qout, qback). Here, “br” stands for “best response”.

2) Top-Layer Optimization for Pricing Control: In the top-
layer, based on the outcome of the bottom-layer optimization,
the LTM determines its prices (qout, qback) by solving:

(P1-Top): maxH (qout, qback)

subject to: qout

∑
i∈Ωb

ybr
i − qback

∑
j∈Ωs

ỹbr
j ≥ Γ, (10)

pout ≥ qout ≥ qback ≥ pback, (11)
decision variables: qout and qback,

where H(qout, qback), {xbr
i , y

br
i }i∈Ωb

and {x̃br
j , ỹ

br
j }j∈Ωs are the

outcomes of the bottom-layer optimization (i.e., Problem (P1-
Bottom)). Constraint (10) ensures that the LTM obtains its
required gain, denoted by Γ, for managing the local trading.
In (11), pout ≥ qout and qback ≥ pback are required such that it
is beneficial for the EBs and ESs to trade with the LTM.

Remark 1: We avoid imposing constraint (10) in (P1-
Bottom), which is based on the rationale that the EBs and ESs
are usually unaware of the LTM’s gain and only aim at opti-
mizing their own benefits under the given prices (qout, qback).�

We emphasize that there exists a special case with Γ = 0
in (P1-Top), meaning that the LTC is altruistic and does not
require any gain for managing the local trading at all. We will
illustrate more about this special case in Section IV.B.

III. BOTTOM-LAYER OPTIMIZATION

We solve Problems (P1-Bottom) and (P1-Top) via backward
induction, starting with solving (P1-Bottom) in this section and
then (P1-Top) in the next one. To solve the two problems, we
first make the following two assumptions.

Assumption 1: Function Ui(z) (or Ũj(z)) measuring the
satisfaction of EB i (or ES j) is continuous, strictly increasing
and concave with Ui(0) = 0 (or Ũj(0) = 0). In particular, to
account for the fairness in the achieved net gains of the EBs
and ESs, we adopt Ui(z) = ln(1 + z) for each EB i and
Ũj(z) = ln(1 + z) for each ES j in this work.

The concavity of Ui(z) (or Ũj(z)) captures the practice
that each EB i (or ES j) experiences a decreasing marginal
satisfaction when its achieved net gain increases. Notice that
the similar assumption also appeared in [5], [7], [10], and [11].

Assumption 2: The energy transmission loss in local trading
mainly stems from the resistance effect and can be quantified
by a quadratic function fi(yi) = ai(yi)

2 + biyi for each EB
i (e.g., see [11] and [12]), where ai and bi are two given
parameters. The same loss model also holds for each ES j.

1The satisfaction function has been commonly used to model the happiness
of the energy users for energy services, e.g., see [5], [7], [8], [10], and [11].
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We first have the following result regarding (P1-Bottom).
Lemma 1: Given the LTM’s prices (qout, qback) that meet

(11), Problem (P1-Bottom) is always feasible.
Proof: There always exists a feasible case for (P1-Bottom),
i.e., yi = ỹj = 0, ∀i ∈ Ωb, j ∈ Ωs (no local trading at all). �

We next characterize the following results for (P1-Bottom).
Proposition 1: Given the LTM’s prices (qout, qback) that

meet (11), Problem (P1-Bottom) is a strictly convex optimiza-
tion problem that accommodates a unique optimal solution.
Proof: The feasible set of (P1-Bottom) is convex. Meanwhile,
the objective function can be shown as strictly concave by us-
ing the scalar composition rule of convex optimization theory
[14]. Thus, (P1-Bottom) is a strictly convex optimization. �

Convexity of (P1-Bottom) means zero-duality gap between
its primal and dual problems, and we thus can solve it with
the Lagrangian method. Let λ denote the dual price for (9).
The Lagrangian function of (P1-Bottom) can be expressed as:

L ({xi, yi}i∈Ωb
, {x̃j , ỹj}j∈Ωs , λ) =∑

i∈Ωb

(Ui(Gi(xi, yi)) + λyi) +
∑
j∈Ωs

(
Ũj(G̃j(x̃j , ỹj))− λỹj

)
. (12)

Based on (12), given λ, the local optimization for EB i is

(EB-Bottom): max
xi≥0,yi≥0

Ui(Gi(xi, yi)) + λyi,

subject to: xi +
(
yi − fi(yi)

) ≥ di, and Gi(xi, yi) ≥ 0.

Meanwhile, for each ES j, its local optimization problem is

(ES-Bottom): max
x̃j≥0,ỹj≥0

Ũj(G̃j(x̃j , ỹj))− λỹj ,

subject to: x̃j +
(
ỹj + f̃j(ỹj)

) ≤ d̃j , and G̃j(x̃j , ỹj) ≥ 0.

Followed by Proposition 1, the following result holds.
Lemma 2: For each given λ, Problem (EB-Bottom) and

(ES-Bottom) are strictly convex optimization problems that
accommodate a unique optimal solution, respectively.
Proof: The proof is similar to that for Proposition 1. �

Using Proposition 1 and Lemma 2, we propose a distributed
algorithm to solve (P1-Bottom). The details are presented in
Algorithm (A1), which uses the bisection, i.e., from Line
2 to Line 8, to find the optimal λ for (P1-Bottom) while
guaranteeing (9). For each given λ, EB i determines its
energy trading decisions by solving (EB-Bottom), and ES
j determines its energy trading decisions by solving (ES-
Bottom). After receiving all EBs’ and ESs’ decisions, the LTM
evaluates the gap between them in Step 6 and updates λ until
convergence. The convergence of (A1) is given by Proposition
2, and its performance is shown in Fig. 2 in Section V.

Proposition 2: Given the LTM’s prices (qout, qback), Algo-
rithm (A1) is guaranteed to converge to the optimal solution of
Problem (P1-Bottom) within log2

(
λ−λ
ε

)
rounds of iterations,

where λ and λ are the upper and lower bounds for λ,
respectively, and ε is the tolerance for the computational error.

Proof: Please refer to Appendix I. �

IV. TOP-LAYER OPTIMIZATION FOR PRICING CONTROL

After solving (P1-Bottom), we next solve Problem (P1-Top):

(P1-Top): max
qout,qback

H (qout, qback) , subject to: constraints (10), (11).

Algorithm (A1): to Solve Problem (P1-Bottom)

1: The LTM initializes λ, λ, ε, and δ = ε+ 1.
2: while |δ| > ε do
3: The LTM sets λ = λ+λ

2 and broadcasts λ to all EBs
and ESs.

4: Given λ, each EB i solves (EB-Bottom) to determine
(xi, yi) and sends yi to the LTM.

5: Given λ, each ES j solves (ES-Bottom) to determine
(x̃j , ỹj) and sends ỹj to the LTM.

6: The LTM evaluates δ =
∑

i∈Ωb
yi −

∑
j∈Ωs

ỹj .
7: If δ > ε, the LTM sets λ = λ and goes back to Line 2;

elseif δ < −ε, the LTM sets its λ = λ and goes back
to Line 2; else, the LTM notifies the EBs and ESs that
the convergence has been reached.

8: end while
9: Each EB i sets (xbr

i , y
br
i ) = (xi, yi) and reports

Gi(x
br
i , y

br
i ) to the LTM. Meanwhile, each ES j sets

(x̃br
j , ỹ

br
j ) = (x̃j , ỹj) and reports G̃j(x̃

br
j , ỹ

br
j ) to the LTM.

The difficulty in solving (P1-Top) lies in that {xbr
i , y

br
i }i∈Ωb

and {x̃br
j , ỹ

br
j }j∈Ωs (i.e., the outcomes of the bottom-layer)

cannot be given in closed forms. Thus, the objective of (P1-
Top) and (10) cannot be given analytically. Nevertheless, (P1-
Top) can be solved by exhaustive search as follows (which is
referred as Algorithm (Alg-Ex) in the rest of this work):
In the top layer: the LTM uses two-dimensional linear search
over (qout, qback) subject to (11) to find the optimal prices.
In the bottom layer: for each (qout, qback) being evaluated by
the top layer, the EBs and ESs perform Algorithm (A1) to
determine their energy trading decisions.
A. Efficient Algorithm to Solve Problem (P1-Top)

Algorithm (Alg-Ex), however, requires a significant com-
plexity. We thus propose an efficient algorithm to solve (P1-
Top). As shown in Section V, the proposed algorithm can
achieve the optimal pricing very close to Algorithm (Alg-Ex),
while consuming a significantly less computational time. To
design this algorithm, we first identify the following result.

Lemma 3: Suppose that qback is given. Then, the best value
of qout that maximizes the objective function of (P1-Top) is

q̂out = arg min
pout≥u≥qback

⎧⎨
⎩u|u

∑
i∈Ωb

ybr
i − qback

∑
j∈Ωs

ỹbr
j ≥ Γ

⎫⎬
⎭ , (13)

where {xbr
i , y

br
i }i∈Ωb

and {x̃br
j , ỹ

br
j }j∈Ωs are the energy trading

decisions in response to the LTM’s prices (u, qback).
Proof: Please refer to Appendix III. �

Based on Lemma 3, solving Problem (P1-Top) is equivalent
to solving (here, the capital letter “E” stands for “Equivalent”)

(P1-Top-E): max
pout≥qback≥pback

Ĥ(qback) = H(q̂out, qback), (14)

subject to: constraint (13).

Again, due to the lack of the closed expression for (13), it is
still difficult to solve the above (P1-Top-E). Nevertheless, we
can explore the hidden property of Ĥ(qback) in (14) as follows.

Property 1: Ĥ(qback) is unimodal for qback ∈ [pback, pout].
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To verify the above property, Fig. 1 plots Ĥ(qback) by
enumerating qback under different parameter-settings, whose
details are explained in Section V (notice that for each given
qback, Lemma 3 enables us to use the linear search to efficiently
find q̂out). Figure 1 shows that Ĥ(qback) is always unimodal.

Remark 2: Although it is very difficult to analytically prove
Property 1, Property 1 perfectly matches the influence of
LTM’s price qback to control the local trading. Specifically,
when qback is small, the ESs are discouraged to trade with the
LTM, which is adverse to the total benefit of the ESs and EBs.
On the other hand, when qback is large, the LTM requires an
even greater qout to meet its required gain. Hence, the EBs are
discouraged to trade with the LTM, which again is adverse to
the total benefit of the EBs and ESs. Thus, both small and large
qback are adverse, yielding the unimodal shape of Ĥ(qback).
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Fig. 1. Examples of Ĥ(qback). Left: (pout, pback) = (12.5, 10); Right:
(pout, pback) = (12, 10). The red circle denotes the maximum of Ĥ(pback).

The unimodal property of Ĥ(qback) enables us to adopt the
Brent’s method to efficiently search for the optimal qback that
maximizes Ĥ(qback) and to solve Problem (P1-Top-E). Brent’s
method, which combines the inverse parabolic interpolation
and the golden section search, is an efficient numerical method
to find the maximum of a single-variable function without
requiring any first-order derivative information [13]. Brent’s
method is guaranteed to find the global maximum for unimodal
function. The details of Brent’s method can be referred to [13],
and we skip them due to the space limitation.

Using Brent’s method, we propose an algorithm referred as
Algorithm (Alg-BM), which consists of a three-layered search
listed below, to solve Problem (P1-Top-E) completely:
In the top layer: the LTM uses Brent’s method to search for
the optimal qback within [pback, pout].
In the middle layer: for each qback being evaluated by the
top layer, the LTM uses linear search to determine q̂out within
[qback, pout] based on (13).
In the bottom layer: for each (qout, qback) being evaluated by
the top and middle layers, the EBs and ESs perform Algorithm
(A1) to determine their energy trading decisions.

Proposition 3: Algorithm (Alg-BM) is guaranteed to
solve Problem (P1-Top) with complexity in order of
O
(
[log2(K)]2K log2(

λ−λ
ε )

)
, where ε is the tolerance for the

computational error and constant K = pout−pback
ε . Note that λ

and λ have been defined in Proposition 2 before.
Proof: First, according to Proposition 2, log2(

λ−λ
ε ) ac-

counts for the complexity required by Algorithm (A1) in the

bottom layer with the given (qout, qback). Second, K accounts
for the complexity required by the linear search for q̂out (based
on (13)) in the middle layer with the given qback. Third,
according to [13], Brent’s method requires the complexity in
order of O

(
[log2 K]2

)
to find the optimal qback in the top

layer, which yields the overall complexity in Proposition 3. �
Notice that Algorithm (Alg-Ex) (described below Problem

(P1-Top)) requires complexity in order of O(K2 log2(
λ−λ
ε )) to

solve (P1-Top). Thus, (Alg-BM) gains a significant advantage
in saving computational time even for a moderate K (e.g.,
K = 1000). Figures 3 and 4 in Section V validate (Alg-BM).
B. Special Case of Altruistic LTM with Γ = 0

For the special case that the LTM is altruistic and does not
require any gain for managing the local trading (i.e., Γ = 0
as described in Section II), we have the following result.

Proposition 4: If the LTM is altruistic (i.e., Γ = 0), then
its optimal pricing for Problem (P1-Top) imposes qout = qback.
Proof: The result is followed by Lemma 3 directly. �

Proposition 4 matches the intuition well. To benefit the EBs
and ESs as much as possible, the LTM controls its prices
(qout, qback) such that it achieves the required gain exactly, i.e.,
(10) should be binding at the optimum of (P1-Top). Thus,
when Γ = 0, the LTM sets qout = qback such that the EBs
and ESs can benefit most. Notice that in this special case, the
middle layer search of Algorithm (Alg-BM) can be skipped .

V. NUMERICAL RESULTS

We perform numerical experiments by using the data set
from [16]. According to [16], the residential electricity retail
price in U.S. in 2014 is 12.5 cents/kWh, i.e. pout = 12.5 cents,
and the average energy consumption of each EB is approxi-
mately 1.25kWh per hour, i.e. di = 1.25kWh. To make the
EBs and ESs different, {ai}i∈Ωb

and {aj}j∈Ωs in their energy
transmission loss functions are randomly chosen according to
a uniform distribution within [0.0025, 0.0075] (to model their
different loss rates), and bi = bj = 0.005, ∀i ∈ Ωb, j ∈ Ωs.

Figure 2 shows the performance of Algorithm (A1) to solve
Problem (P1-Bottom). The two subplots in the top show the
results under Nb = 10 and Ns = 5 (i.e., ten EBs and five ESs),
with the top-left subplot showing the convergence of λ and the
top-right subplot showing the corresponding total satisfaction
of all EBs and ESs. Specifically, both subplots show that (A1)
quickly converges. Moreover, the top-right subplot shows that
after (A1) converges, the total satisfaction of all EBs and ESs
perfectly matches the optimal value of Problem (P1-Bottom)
(the optimal value is obtained by the optimization solver CVX
[14] and is denoted by the solid line in green), thus validating
(A1). The two subplots in the bottom show the results under
Nb = Ns = 10 and validate (A1) again.

Figures 3 and 4 show the performance of Algorithm (Alg-
BM) proposed in Section VI.B to solve (P1-Top). For com-
parison, we also use Algorithm (Alg-Ex) to solve (P1-Top).
Figure 3 plots the relative error between the optimal results
(including the optimal qback of the LTM and the optimal
total satisfaction of all EBs and ESs) obtained by Algorithm
(Alg-BM) and those obtained by Algorithm (Alg-Ex). Both
subplots in Fig. 3 show that the relative errors under all tested
cases are extremely small, thus validating the accuracy of

The Fourth IEEE Workshop on Smart Data Pricing 2015

573



5

5 10 15

−2

0

2

4

λ

5 10 15

4

6

8

10

12

to
ta

l s
at

is
fa

ct
io

n

5 10 15

−2

0

2

4

Iteration Index

λ

5 10 15
0

5

10

15

Iteration Index

to
ta

l s
at

is
fa

ct
io

n

qout=11.5,qback=11

qout=12,qback=11

qout=11.5,qback=11

qout=12,qback=11

qout=11.5,qback=11

qout=12,qback=11

qout=11.5,qback=11

qout=12,qback=11

5.871

8.068

10.995

14.763

Fig. 2. Performance of Algorithm (A1) to solve (P1-Bottom). Top two
subplots: Nb = 10, Ns = 5. Bottom two subplots: Nb = Ns = 10.

1 2 3 4 5 6
0

1

2

3
x 10−3

R
el

at
iv

e
 E

rr
or

1 2 3 4 5 6
0

0.5

1

x 10−4

different values of Γ

R
el

at
iv

e
E

rr
or

opt. q
back

opt. tot. satis.

opt. q
back

opt. tot. satis.

Fig. 3. Accuracy of Algorithm (Alg-BM). Top subplot: (pout, pback) =
(12.5, 10). Bottom subplot: (pout, pback) = (12, 10). We set Nb = Ns = 5.

Algorithm (Alg-BM). Correspondingly, Fig. 4 further plots
the computational time consumed by (Alg-BM) and (Alg-Ex).
Both subplots in Fig. 4 show that Algorithm (Alg-BM) can
significantly save the computational time (note that we mark
the ratio of computational time saved by (Alg-BM)).
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Fig. 4. Comparison of computational time. Top subplot: (pout, pback) =
(12.5, 10). Bottom subplot:(pout, pback) = (12, 10).

Finally, Fig. 5 shows the optimal net gains achieved by
all EBs and ESs from local trading. Figure 5 verifies that all
EBs and ESs can positively benefit from the local trading. In
particular, we evaluate the fairness level for the achieved net

gains of the EBs and ESs with the metric of fairness index
(FI) [15]. Figure 5 shows that the FIs are very close to one
for all cases, meaning that the EBs and ESs benefit in a very
fair manner, a desirable result as expected in Assumption 1.
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Fig. 5. Optimal net gains achieved by the EBs and ESs. Top subplot:
(pout, pback) = (12.5, 10). Bottom subplot: (pout, pback) = (12, 10). We vary
Γ = 1, 3, and 5.

Figure 5 shows that the net gains achieved by the EBs and
ESs decrease as the LTM requires to gain more. The details for
this trend are further shown in Fig. 6, in which we vary Γ and
plot the optimal total satisfaction of all EBs and ESs (denoted
by the solid line with circles) and the sum of the achieved
net gains of all EBs and ESs (denoted by the dash line with
triangles). Figure 6 again verifies that the achieved net gains of
the EBs and ESs are compromised as the LTM’s required gain
increases. Moreover, we evaluate the relative gap between the
sum of all EBs’ and ESs’ achieved net gains (which are based
on the optimal solution of the two-layered optimization) and
the potentially maximum total net gain that they can achieve2.
In Fig. 6, we mark the relative gaps, which are denoted by the
numbers above the dash-line. Interestingly, the results show
that these relative gaps are extremely small in all tested cases,
meaning that the two-layered optimization enables the EBs and
ESs to achieve the total net gain which is very close (with
even negligible loss) to the potentially maximum total gain
they could achieve, while guaranteeing that all EBs and ESs
benefit in a very fair manner.
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Fig. 6. Benefits of the EBs and ESs versus the LTM’s required gain. Top
subplot: (pout, pback) = (12.5, 10). Bottom subplot: (pout, pback) = (12, 10).

2This maximum total net gain is obtained by using
∑

i∈Ωb
Gi(xi, yi) +

∑
j∈Ωs

G̃j(x̃j , ỹj) as the objective function in Problem (P1-Top).
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VI. CONCLUSION

We have investigated the optimal management of local
energy trading for future SMG, in which i) the EBs and ESs
perform local energy trading in response to the LTM’s pricing
to maximize their respective benefits, and ii) the LTM controls
its price in the local trading market to benefit the EBs and
ESs as much as possible while guaranteeing a required gain
for itself. We formulate the whole problem as a two-layered
optimization framework and propose two algorithms (i.e.,
(Alg-Ex) and (Alg-BM)) for achieving the optimal solution.
Numerical results have been presented to validate the proposed
local trading model as well as the proposed algorithms.

APPENDIX I: PROOF OF PROPOSITION 2
To prove Proposition 2, we first present the following two

lemmas (with their proofs given in Appendix II).
Lemma 4: For each ES j, its optimal ỹj for Problem (ES-

Bottom) is non-increasing in λ.
Lemma 5: For each EB i, its optimal yi for Problem (EB-

Bottom) is nondecreasing in λ.
The above two lemmas enable us to use the bisection

method to find the optimal λ ensuring that (9) is satisfied for
the dual problem of (P1-Bottom). Recall that Problem (P1-
Bottom) is a strictly convex optimization and thus guarantees
zero duality-gap between its primal and dual problems. Thus,
the bisection method can successfully find the optimal solution
for Problem (P1-bottom), with the maximum iteration number
no greater than log2

(
λ−λ
ε

)
.

APPENDIX II: PROOFS OF LEMMAS 4 AND 5
We first present the proof for Lemma 4. A close look at

Problem (ES-Bottom) shows that (5) should be strictly binding
for achieving the optimum of (ES-Bottom) (notice that if (5) is
slack, we can increase xi further, which increases the objective
function without violating any constraint). The binding of (5)
enables us to substitute x̃j by ỹj and equivalently transform
(ES-Bottom) into

(ES-Bottom-E): max
ỹj≥0 and ỹj+fj(ỹj)≤d̃i

Ũj(G̃j(ỹj))− λỹj

subject to: G̃j(ỹj) = (qback − pback)ỹj − pbackfj(ỹj), (15)

in which G̃j(x̃j , ỹj) in (7) is simplified into G̃j(ỹj) in (15). By
taking the first order derivative of the objective function and
setting it equal to zero, we get the quadratic function below

−λpbackaj ỹ
2
j + (λ(qback − pback(bj + 1)) + 2pbackaj) ỹj +

(λ− (qback − pback(bj + 1))) = 0. (16)

A close look at (16) shows that it has two roots given by

r1 =
1

2pbackaj

(
qback − pback(bj + 1) + 2pbackaj

1

λ
+
√
Δ

)
,

r2 =
1

2pbackaj

(
qback − pback(bj + 1) + 2pbackaj

1

λ
−
√
Δ

)
,

where Δ is given by

Δ =
(
(qback − pback(bj + 1))2 + 4pbackaj

)
+ 4(

pbackaj
λ

)2.

If λ > 0, then the optimal solution for (ES-Bottom-E) is

ỹj = min{max{r1, 0}, õej}, (17)

where constant õej = argmaxz≥0{z|z + f̃j(z) ≤ õj} is the
equivalent upper-bound for ỹj . It is easy to verify that ỹj given
by (17) is non-increasing when λ increases.
If λ < 0, then the optimal solution for (ES-Bottom-E) is

ỹj = min{max{r2, 0}, õej}, (18)

which again is non-increasing when λ increases.
In summary, we obtain that the optimal ỹj for Problem (ES-

Bottom) is non-increasing in λ. With a slight modification of
the above proof, we can also prove Lemma 5.

APPENDIX III: PROOF OF LEMMA 3

It is noticed that each EB i’s net gain Gi(xi, yi) in (3)
increases as qout decreases. Hence, from the the view of
(P1-Bottom), the smaller the qout, the greater its objective
function, and it is more likely that (4) is feasible. Thus,
based on the definition of function H(qout, qback), we have
H(qout, qback) ≥ H(q′out, qback) if qout ≤ q′out, i.e., function
H(qout, qback) is decreasing in qout (the result matches the
intuition that a greater sell-out price qout by the LTM is adverse
to the net gains of the EBs and discourages the EBs to perform
the local trading. As a result, the total satisfaction of all
EBs and ESs decreases). Therefore, under a given qback, the
minimum value of qout that meets (10) in (P1-Top) maximizes
H(qout, qback), which yields (13) in Lemma 3.
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