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Abstract—The optimal operation of a distributed battery energy storage system (BESS) for energy arbitrage under dynamic pricing is

studied in this paper, and the Pareto optimal arbitrage policy that balances the economic value and lifetime tradeoff of the BESSis

obtained. Specifically, the lifetime performance of the BESS is represented by its average lifetime, i.e., the average operational duration

within which its capacity stays above a certain threshold, and the value performance of the BESS is defined as the total average

arbitrage value within its entire lifetime. We propose a constrained stochastic shortest path (CSSP) model to characterize the optimal

value-lifetime performance pair. By exploiting the hidden structure of this CSSP problem, an efficient parallel algorithm is proposed to

compute the optimal policy. We further prove the condition under which the optimal policy is Pareto optimal. This implies that the

achievable optimal value-lifetime performance pair is globally optimal as long as the system-wide utility is monotonically increasing in

both the value performance and the lifetime performance. We validate our proposed model and algorithm via real battery specifications

and electricity market data, and the results show promising insights for both infrastructure planning and operational management of

BESSs in practice.

Index Terms—Battery energy storage system, energy arbitrage, value and lifetime performances, pareto optimal operation
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1 INTRODUCTION

NOWADAYS, battery energy storage is receiving in-
creasing attention due to its wide application in smart

grids [1]. Based on different application scenarios, a battery
energy storage system (BESS) can provide different values
for the system operators. For instance, a BESS can help
smooth the distributed generation [2], mitigate load peaks
by its fast charging/discharging capability [3], increase the
reliability and feasibility of the power system by providing
regulation services [4], and reduce the electricity cost for
residential customers [5], [6]. It is therefore argued that the
development of energy storage technology, especially, bat-
tery technology, might be a complete solution for many crit-
ical challenges in smart grids [7], [8].

Due to the deregulation of the electricity markets in
many countries, electricity prices have become variable and
volatile [9]. Therefore, when facilitated with a BESS, the
operator is able to perform the so-called energy arbitrage
[7], [9], [10], [11]. Specifically, in the arbitrage mechanism,
the operator has the real option to buy the electricity at one
point in time, store it in the BESS, and sell it at a later point
in time to exploit price variability and volatility. Despite all
the aforementioned benefits that a BESS can provide, as is

argued in [10], if the value of the BESS as an arbitrage mech-
anism in a dynamic electricity market is not attractive
enough, the market may not invest sufficiently in batteries,
which consequently might prevent all those benefits materi-
alizing. Therefore, understanding the economic value of the
BESS as an arbitrage mechanism in dynamic electricity mar-
kets is of great importance [7], [9], [10].

Towards this end, this paper focuses on investigating the
operation of a micro-scale BESS for arbitrage with stochasti-
cally varying electricity prices. Here, the term “micro-scale”
refers to the size of the energy storage compared to its coun-
terpart “grid-scale”, with a capacity that ranges from a few
to dozens of kilowatt-hours. Unlike the grid-scale BESSs
that are typically centralized in the generation side with
grid-level impact (e.g., for the purpose of performing eco-
nomic dispatch and frequency regulation), the micro-scale
BESS investigated in this paper is by nature distributed at
the individual end-user level with no direct impact on the
exogenous electricity market. Therefore, the BESS operator
that we are focusing on is a pure price-taker who cannot
affect the exogenous electricity pricing scheme.1 Further-
more, we consider that the micro-scale BESS is independent
from the other BESSs, which means that no interaction exists
between the BESS operator and the other operators.

1.1 Motivating Research Questions

In terms of arbitrage with a micro-scale BESS, one should
note that, unlike other types of energy storage, batteries
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1. Although massive BESSs can be aggregated by a broker to form a
large-scale BESS which has a sufficient capacity to affect the planning
and operation of the power grid, the investigation of massive BESSs
with a broker is beyond the scope of our paper.
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usually have a limited lifetime,2 and most of them go to
landfills at their end-of-lifetime, thus creating serious envi-
ronmental issues due to battery disposal [28]. Therefore, an
economically-optimal operation of a BESS may not be environ-
mentally-optimal when, for instance, the BESS is discharged
too fast or the power flow direction is changing too rapidly.
To be more specific, if the battery operator unilaterally
operates the battery to maximize its arbitrage value, the
charging and discharging behaviour will likely be aggres-
sive. As a result, the battery may quickly reach its lifetime.
In contrast, being conservative to prolong the battery lifetime
may loss good arbitrage opportunity and increase main-
tenance costs, resulting in a degradation in the economic
value performance.

Therefore, it is of practical importance to obtain an arbi-
trage policy that determines the Pareto optimal tradeoff
between the above two optimization criteria, i.e., economi-
cally-optimal and environmentally-optimal. Note that fol-
lowing the conventional definition of Pareto optimality, a
Pareto optimal policy means that it is impossible to make
one of the performance criteria better off without making
the other one worse off. Another perspective to interpret
Pareto optimality is that the system-wide utility is maxi-
mized under a Pareto optimal policy as long as the utility
function is monotonic in both criteria. Although the prob-
lem of the operational management of batteries has been
extensively studied in the literature (to be reviewed later),
to the best of the authors’ knowledge, the Pareto optimal
operation of a BESS to balance the tradeoff between the eco-
nomic value and the lifetime performance has been less
explored. In summary, the following research questions
remain unanswered:

1) How do we quantify the “conservativeness” and
“aggressiveness” in the operational policies of a
BESS? And how do we achieve the balance in the
economic value and the lifetime performance?

2) What is the lifetime impact on the economic value of
a BESS? What is the likely loss in both the economic
value and the lifetime performance of a BESS if the
lifetime impact is ignored?

3) Is the optimal arbitrage policy always Pareto opti-
mal? What are the conditions for the existence of the
Pareto optimal policy? And how do we efficiently
calculate the Pareto optimal policy?

1.2 Contributions

This paper is particularly motivated to answer the above
questions through formulating a novel optimization model
to characterize the operational tradeoff of a distributed
micro-scale BESS. To be more specific, with mild assump-
tions, we model the charging and discharging behaviors of
a BESS as a finite-state discrete-time absorbing Markov
chain, in which the end-of-lifetime of the BESS is modeled
as the absorbing state. We define the value performance of the
BESS as the total average arbitrage value earned before

absorption, and the lifetime performance of the BESS is
defined as the average lifetime of the BESS, i.e., the average
number of steps before being absorbed in the absorbing
Markov chain. Based on this absorbing Markov chain
model, the paper establishes the following results:

1) We propose an optimization framework using the
constrained stochastic shortest path (CSSP) model,
in which the detailed charging and discharging deci-
sions can be directly linked to both the value and
lifetime performances. In particular, this framework
allows the operators to exactly quantify the degree of
how aggressive or conservative the charging/dis-
charging behaviors should be. Therefore, the opera-
tors are capable of tuning their arbitrage policies to
strike a predetermined balance in their BESSs’ value
and lifetime performances.

2) We show that there exists an economically-optimal
arbitrage policy, under which the value performance
of the BESS is maximized. Any policy that is more
aggressive than this policy will shorten the lifetime
performance and deteriorate the value performance
simultaneously, while any policy that is more con-
servative than this policy will enhance the lifetime
performance but degrade the value performance.
Therefore, the interplay between the value and life-
time performances can be captured, and any possible
loss in the value and lifetime performances can also
be theoretically quantified.

3) We explore the hidden structure of this CSSP prob-
lem and prove the existence of optimal deterministic
and stationary policies. We obtain all the optimal
value-lifetime performance pairs and their corre-
sponding optimal policies, and further provide the
conditions for these pairs and policies to be Pareto
optimal. By exploiting the hidden structure of the
CSSP framework, we propose an efficient parallel
iterative algorithm, with guaranteed convergence, to
compute the Pareto boundary of the feasible value-
lifetime region. Based on this parallel algorithm, we
perform extensive simulation to validate our model
via practical data of battery parameters and electric-
ity prices.

This paper primarily contributes to the existing literature
of energy arbitrage with BESSs in the field of smart grids.
Nevertheless, from the methodological perspective, our
study of the CSSP model also provides significant insight to
other similar deadline-constrained decision-making prob-
lems, e.g., [14] and [15].

1.3 Related Works

Currently, there are some related works investigating
arbitraging models and economically-optimal operational
policies for BESSs in dynamic electricity markets, e.g., [7],
[10], [16], [18], [19], [20], [21]. In particular, [7] presented
a stochastic programming framework for analyzing the
arbitrage value of energy storage over a fixed horizon of
24 hours. The authors of [10] analyzed the finite-horizon
economic value of energy storage with a ramp constraint in
response to a stochastically varying electricity price. When
the value is defined to be the negative total discounted

2. Note that a BESS’s lifetime is usually defined to be the serving
duration within which its energy capacity stays above a particular
threshold of the initial capacity [12]. For instance, in practice, a typical
value for this threshold is 80 percent [12], [29].
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energy costs over the infinite time horizon, the authors of
[18] proposed an optimal threshold-structured control pol-
icy, which enables the consumer to minimize its energy cost
by exploiting price variations. Recent work [20] further
showed some interesting results in different aspects of the
economic value of storage. Specifically, the authors of [20]
showed that if the value of storage is defined as the finite-
horizon arbitrage value and the electricity purchasing price
is always equal to the price of selling that stored energy
back to the grid, then the value of storage is independent of
the operator’s power demand, which is equal to the pure
arbitrage value of the storage.

Unfortunately, all of the above works are based on the
assumptions that i) the operational horizon of a battery is
pre-specified, either finite (for short-term scheduling, e.g.,
[7], [10], [20]) or infinite (for long-term scheduling, e.g., [2],
[21], [18]), and that ii) the operator operates the battery
until an explicit exit moment. However, these assumptions
mismatch with the fact that batteries degrade with usage
and finally reach their end-of-lifetime. In practice, when the
lifetime impact is taken into account, the operator typically
faces a policy-dependent yet uncertain exit time, which is
neither deterministically finite nor infinite. Therefore, the
existing models cannot fully characterize the interplay of
the operational policies and the corresponding value and
lifetime performances of the BESS, and consequently, the
tradeoff between the value and lifetime performances can-
not be quantified.

We have studied the economic value of BESSs based on
given electricity prices [16] and stochastically varying prices
[19], with particular interest on the impact of limited lifetime
on the value of batteries. This paper is partially based on [16]
and [19], but tries to tackle an essentially different problem
with regard to performing energy arbitragewith a BESS. Spe-
cifically, in [16], prices were assumed to be given based on
historical traces, and thus the obtained economic value can
only serve as an estimated upper bound for the real value
performance. In [19], we proposed a methodological frame-
work to obtain the optimal energy trading policy for a life-
time-constrained BESS. However, the tradeoff between the
value and lifetime performanceswas not quantified. Further-
more, in [19], we did not investigate the aggressiveness and
conservativeness of the operational policy and, thus, all the
aforementioned research questions (in Section 1.1) have not
been answered yet. We believe that the study of the tradeoff
between aggressive operation and conservative operation,
and the associated interplay between the value and lifetime
performances of a BESS clearly differentiate this paper from
[16], [19] and the other relatedworks.

1.4 Organization

The rest of this paper is organized as follows. In Section 2,
we introduce the system model of the distributed BESS and
formulate the operation of the BESS as a CSSP problem. We
then investigate the conditions for the existence of optimal
stationary and deterministic policies in Section 3. Subse-
quently, we show our main parallel algorithm for solving
the proposed CSSP problem in Section 4. We validate our
model via real-world data in Section 5 and then conclude
the paper in Section 6.

2 SYSTEM MODEL

In this section, we first present a general battery model,
which includes the lifetime model and capacity degradation
model for the BESS. Then, we formulate the energy arbi-
trage of the BESS as a CSSP problem.

2.1 Battery Model

We denote the time horizon by T ¼ f0; 1; . . .g, and let t 2 T
denote the discrete time index corresponding to the time
interval ðt; tþ 1� with length D. Without loss of generality,
we assume D ¼ 1 hour. Let s0 denote the initial battery
capacity and st denote the current capacity of the battery at
time t � 1. The energy level bt of the battery evolves accord-

ing to btþ1 ¼ bt þ xt, where xt ¼ hcct � 1
hd
dt denotes the net

energy flow through the battery with charging rate ct,
charging efficiency hc, discharging rate dt and discharging
efficiency hd. Note that the coefficients hc; hd 2 ½0; 1�. Mean-
while, both ct and dt are bounded by the battery’s power rat-
ing, i.e., ct 2 ½0; cmax� and dt 2 ½0; dmax�, where cmax and dmax

denote the charging and discharging power ratings, respec-
tively. In practice, the energy level bt is usually bounded
within the safe region ½g1st; g2st�, where the coefficients
g1; g2 are determined by the battery operator based on the
preferred depth of discharge. For instance, as a practical
working scenario, one can choose g1 ¼ 10% and g2 ¼ 90%.

2.1.1 Ah-Throughput Lifetime Model

Typically, a battery’s lifetime is expressed in cycles.3 How-
ever, in practice, it is often difficult to find an accurate rela-
tionship between the remaining life cycles and how it is
charged/discharged due to the irregular charge/discharge
profiles [12], [29]. Fortunately, a representative measure of
battery life, i.e., the lifetime energy throughput (LET), which
is measured by the amount of energy that can be cycled through
a battery before it requires replacement, is demonstrated to be
much more accurate to calculate during the irregular charg-
ing/discharging process (please refer to Fig. 1 for a better
illustration). Note that in most practical cases, the initial
LET is estimated from the depth of discharge versus cycles to
failure curve provided by the battery manufacturer [12]. To

Fig. 1. Illustration of Ah-throughput lifetime modeling for typical lead-acid
batteries [12]. The Ah-throughput model (e.g., see [12], [13], [16], [19])
assumes that there exists a fixed amount of LET before it needs to be
replaced, as long as the battery is operated above a certain depth of dis-
charge, for instance, 40 percent for the illustrated case.

3. The battery cycle lifetime is defined as the number of complete
charge-discharge cycles a battery can perform before its nominal capac-
ity falls below 80 percent of its initial rated capacity [13].
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be more specific, if we let C denote the nominal battery life
cycles at a depth of discharge of C, and assume its initial
LET to be u0, then according to [12], we have u0 ¼ Cs0C.
Furthermore, we denote ut as the remaining throughput at
time t � 1. Therefore, according to the Ah-throughput
model [12], ut decreases according to

ut ¼ u0 �
Xt�1

t¼0

kchcct þ
kd

hd
dt

� �
; 8t � 1; (1)

where kc and kd are the weighting factors to balance the
charging and discharging effects, respectively. The ratio
between kc and kd is related to the specific battery technol-
ogy and is known by the battery operator. For example,
existing experiments for typical lead-acid batteries show
that discharging almost dominates the decrement of the
LET [12], i.e., kc ¼ 0 and kd ¼ 1.

AðvvtÞ ¼
(
xt

�����min
�
bt � g1fðut; s0; rÞ; dmax; ut

�
hd

� xt

� hcmin
�
g2fðut; s0; rÞ � bt; c

max; ut
�)

; 8vvt 2 V: (2)

2.1.2 Capacity Degradation Model

Note that during the charging/discharging process, the
energy capacity st also degrades with the decrement of ut,
and we consider that the relationship between ut and st is
captured by function st ¼ fðut; s0; rÞ, where r is the threshold
for the capacity decaying, below which the operator is obli-
gated to replace the battery (i.e., the case when ut ¼ 0 corre-
sponds to the case that the battery uses up all its LET and
reaches its end-of-lifetime). Note that different batteries may
have a different capacity decaying function f , which is an
important feature reflecting the properties of battery technol-
ogy. As an example, in [16], it is assumed that fðut; s0; rÞ ¼
s0ðrþ 1�r

u0
utÞ, which corresponds to a linear degradation

assumption on the battery capacity. The detailed modeling
and analysis of the capacity decaying function f is beyond
the scope of this paper. As a bounded and monotonically
non-increasing function in ut, we assume that this function is
known to the operator (not necessarily analytically known).
Note that this is a mild assumption since the capacity versus
remaining throughput curve can be easily estimated based on
a prior experiment by the batterymanufacturer [29].

2.2 Energy Arbitrage Model

2.2.1 The Price Model

Assume that at each slot, the electricity price evolves
according to a distribution which may only depend on
the price in the current time slot (i.e., Markovian, which
has been widely used in dynamic price modeling, such
as in [17] and [22], [23], [24]). Therefore, we can define a
Markov chain with state space P and transition matrix P,
where the finite-state price space P is obtained by quan-
tizing the prices with a fixed stepsize dp (e.g., dp ¼ 5
cents), and each entry of the transition matrix P is a
probability given by Pfptþ1 ¼ p0jpt ¼ pg; p; p0 2 P. Here
we adopt the same assumption for modeling the

exogenous electricity price process as [22] by introducing
two properties for the Markov chain: 1) Markov-Contrac-
tivity in the mean and 2) Stochastic Monotonicity. The
detailed definitions of these two properties can be
referred to in [22]. Here, we briefly give some interpreta-
tions: the Markov-Contractivity captures the fact that pri-
ces tend to be mean reverting, and the Stochastic
Monotonicity basically describes the “stickiness” of the
price, namely a low price at time t is more likely to lead
to a low price at time tþ 1, and likewise, a high price at
time t is more likely to lead to a high price at time tþ 1.
Both of these definitions are relatively mild conditions
for representing simple forms of regularity in the price
dynamics [22].

2.2.2 Policies for Arbitrage

Similar to the previous quantization of the price space, we
discretize the energy level and the remaining throughput
with a fixed stepsize de (e.g., de ¼ 0:5 kWh), and further
denote the whole energy level space and the remaining
throughput space as set B and set Q, respectively. We define
vvt ¼ ðut; bt; ptÞ as the current system state at time t and
denote the whole state space as V ¼ Q� B � P. Therefore,
we have ut 2 Q, bt 2 B, pt 2 P, and vvt 2 V, 8t 2 T .

From the decision-making perspective, in order to make
an appropriate decision at time t, it is sufficient for the sys-
tem operator to observe vvt and determine its feasible net
energy flow xt 2 AðvvtÞ, where AðvvtÞ is the feasible action
space defined in (2). It is worth pointing out here that, when
ut ¼ 0, we have Að0; bt; ptÞ ¼ f0g, which means that no fur-
ther charging or discharging action can be made (in other
words, keeping idle is the only feasible action for a dead
battery). We define pt at slot t as a mapping function from

the system state vvt 2 V to a probability measure P
�
xtjvvt

�
on

the action space AðvvtÞ. If this mapping function does not
depend on time, we call it a stationary mapping, and if the

probability measure P
�
xtjvvt

�
¼ 1, then we call it determin-

istic. We shall call such an element p a policy, and call the set
P a policy space. We use PSD � P to denote the stationary
and deterministic policy sub-space.4

In particular, state vv ¼ ð0; b; pÞ, 8b 2 B and p 2 P, is an
absorbing state. Once the battery reaches this state, it will
remain there without invoking any profit or cost anymore.
Mathematically, we use set Vab to denote all the absorbing
states and use set Vtr to denote all the remaining transient
states. Hence, the total state space V is the union of Vab and
Vtr, i.e., V ¼ Vab [Vtr.

2.2.3 Performance Metrics

During the arbitrage process, the reward per time slot,
which is denoted by Vðvvt; xtÞ, can be formulated as

Vðvvt; xtÞ ¼
��

pt �
akd

hd

�
dt � ðpt þ akchcÞct � h

�
	 Ifut > 0g:

4. An important objective in solving control problems is to identify
subclasses of policies which are simple to handle and to implement,
and yet are good candidates to be optimal [32]. Stationary and deter-
ministic policies are such good candidates, which serve as the primary
concern in this paper.
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Note that parameter a ¼ capital cost
u0

denotes the marginal cost
factor, which is a proportional coefficient mapping the
charge and discharge profile into the monetary cost. Param-
eter h denotes the fixed per-time-slot maintenance cost of
the BESS (e.g., including air conditioning costs, warehous-
ing costs, etc.), which is assumed to be known. Note that If	g
is an indicator function. When ut ¼ 0, the operator is obli-
gated to replace the battery, and thus no profit will be
gained any further.

We are now ready to define the value and lifetime per-
formances of the BESS under a given policy p. Specifically,
we have the following two performance measures.

Definition 1 (Value Performance). We define the value perfor-
mance of the BESS as the total average arbitrage value of the
BESS within its entire lifetime:

V ðp;vv0Þ ¼D E

" XDðpÞ�1

t¼0

Vðvvt; xtÞjvv0

#
; (3)

where the expectation is taken with respect to the price random-
ness, and the time horizon stops at epoch ðDðpÞ � 1ÞD ¼
DðpÞ � 1. Note that DðpÞ ¼ minftjut ¼ 0g is a random vari-
able that captures the minimum number of steps before reach-
ing one of the absorbing states.

From the absorbing Markov chain’s perspective, DðpÞ
denotes the total number of steps before entering into one of
the absorbing states. Since the time horizon is discretized
and each step corresponds to one time slot of length D ¼ 1
hour, the total number of steps is also equal to the length of
the operational duration before reaching the end-of-lifetime
of the BESS. Therefore, we have the following definition of
the lifetime performance.

Definition 2 (Lifetime Performance). We define the lifetime
performance of the BESS as the average operational duration
within which its remaining throughput stays above 0; i.e.,

Lðp;vv0Þ ¼D E
	
DðpÞjvv0



: (4)

We remark here that the above two performance meas-
ures, defined by the expectations in (3) and (4), are appro-
priate for modeling the economic aspects of the BESS in
a stochastic environment. Meanwhile, according to their
definitions, we will use “value performance” and “average
value” interchangeably, and the same will be done with
“lifetime performance” and “average lifetime”.

2.2.4 Pareto Optimal Operation

The above model of the BESS and the two performance met-
rics define how the system works and how the BESS is
affected by the manner in which it is operated. Specifically,
the system starts from the initial state vv0 (a transient state).
At every time epoch t, the system operator specifies how to
operate the system by choosing a policy p 2 PSD, which
maps the current system state vvt to a feasible action
xt 2 AðvvtÞ. Finally, the system stops at one absorbing state
and stays there forever. For a given initial state vv0, each pol-
icy p yields a vector as the performance output, i.e., a value-

lifetime performance pair ðLðp;vv0Þ; V ðp;vv0ÞÞ. We define

the feasible value-lifetime region as the union of all feasible
value-lifetime performance pairs; i.e.,

Rðvv0;PÞ ¼
D

[
8p

ðLðp;vv0Þ; V ðp;vv0ÞÞ: (5)

Here, we explicitly define Rðvv0;PÞ as a function of the ini-
tial state vv0 and the price dynamics P. We denote the outer-

most boundary of Rðvv0;PÞ by set RðuÞðvv0;PÞ, which is
called the upper boundary and can be given as follows:

RðuÞðvv0;PÞ ¼
D

[
8pðuÞ

ðLðpðuÞ;vv0Þ; V ðpðuÞ;vv0ÞÞ; (6)

where pðuÞ 2 PSD denotes a particular policy, by which its

corresponding value-lifetime performance pair
�
LðpðuÞ;vv0Þ;

V ðpðuÞ;vv0Þ
�
locates at the outermost boundary of Rðvv0;PÞ.

For notational convenience, we use set P
ðuÞ
SD to include all

those policies pðuÞ. Therefore, P
ðuÞ
SD � PSD.

Before defining what the Pareto boundary of the feasible
value-lifetime region is, we would like to define the Pareto
optimal policy and the Pareto optimal value-lifetime perfor-
mance pair as follows:

Definition 3 (Pareto Optimality). A value-lifetime performance
pair

�
LðpðpÞ;vv0Þ; V ðpðpÞ;vv0Þ

�
is called strict Pareto optimal iff

there does not exist another value-lifetime performance pair�
Lðp;vv0; V ðp;vv0Þ

�
>

�
LðpðpÞ;vv0; V ðpðpÞ;vv0Þ

�
with p 2 PSD.

Note that for two vectors, ðv1; v2Þ and ðv01; v02Þ, we use
ðv1; v2Þ > ðv01; v02Þ to denote v1 > v01 and v2 > v02.

Based on Definition 3, we are now ready to formally
define the Pareto boundary as follows:

Definition 4 (Pareto Boundary). The Pareto boundary of the
feasible value-lifetime regionRðvv0;PÞ, denoted byRðpÞðvv0;PÞ,
is a subset ofRðuÞðvv0;PÞ, in which all the value-lifetime perfor-
mance pairs are Pareto optimal.

Similar to the definition of P
ðuÞ
SD, we denote the set of all

Pareto optimal policies by P
ðpÞ
SD. Intuitively, we have P

ðpÞ
SD �

P
ðuÞ
SD � PSD.

2.2.5 The Optimization Problem Formulation

According to (6), characterizing the complete upper bound-
ary requires obtaining the corresponding optimal policy for
each point in the boundary. An arbitrary point on the upper
boundary can be uniquely determined when the average
lifetime is fixed and the average value is maximized. Mathe-
matically, we have the following optimization problem:

ðP0Þ :
maximize

p2PSD

V ðp;vv0Þ

subject to Lðp;vv0Þ ¼ LðuÞ;

(

where LðuÞ is a fixed value chosen from ½L0;þ1Þ with L0

denoting the lower bound of the lifetime performance.5

Noticeably, Problem ðP0Þ is a CSSP problem that maximizes

5. On the one hand, the lower bound of the lifetime corresponds to the
case when the end-of-lifetime is reached as fast as possible, namely, the
operator operates the battery with the maximum charge and discharge
power. On the other hand, the lifetime can theoretically go to infinity (e.g.,
keeping the battery idle forever), according to the Ah-throughput model
[12]. Therefore, the feasible range ofLðp;vv0Þ is ½L0;þ1Þ.
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the average value within the operational duration that stops

at epoch DðpÞ � 1, where Lðp;vv0Þ ¼ E
	
DðpÞjvv0



¼ LðuÞ.

The primary objectives of this paper are to investigate the
structural properties of ðP0Þ and to propose an efficient
algorithm to solve ðP0Þ. However, before solving ðP0Þ, we
need to answer the following question: whether it is safe to
only consider the stationary and deterministic policy sub-

space, given the fact that the optimal policy pðuÞ for ðP0Þ
may not exist or may not necessarily be stationary and/or
deterministic. We answer this question in the next Section 3.

3 EXISTENCE OF OPTIMAL STATIONARY AND

DETERMINISTIC POLICIES, AND THEIR PARETO

OPTIMALITY

In this section, we first show the existence of the optimal sta-
tionary and deterministic policy in PSD for the proposed
CSSP problem. We then discuss the condition for the opti-
mal policy to be Pareto optimal.

3.1 Existence of Optimal Stationary and
Deterministic Policies

Based on the standard Lagrangian approach [32], we relax
the average lifetime constraint in ðP0Þ and consider the fol-
lowing optimization problem:

ðP1Þ : maximize
p2PSD

Lð�;p;vv0Þ;

where Lð�;p;vv0Þ ¼ V ðp;vv0Þ þ �
�
Lðp;vv0Þ � LðuÞ�. For a

given �, we denote the optimal policy for ðP1Þ by p

�. Intui-

tively, for any �, p

� can be obtained by solving the following

standard stochastic shortest path (SSP) problem:

ðP2Þ : maximize
p2PSD

E

" XDðpÞ�1

t¼0

V�ðvvt; xtÞjvv0

#
;

where the new reward function V�ðvvt; xtÞ is reformulated as
V�ðvvt; xtÞ ¼ Vðvvt; xtÞ þ �Ifut > 0g. Suppose that we use J
ðvvÞ
to denote the optimal cost-to-go function of ðP2Þ from the
dynamic programming perspective. Then, 8vv 2 Vtr, the
optimal policy p


� of (P2) satisfies the Bellman equation as
follows:

J
ðvvÞ ¼ max
x2AðvvÞ

n
V�

�
vv; x

�
þ E

	
J
�u � jxj; bþ x; p0

�
o
:

The above equation can be solved through value iteration
[30]. However, slightly different from the standard value
iteration algorithm, all the absorbing states in the SSP prob-
lems are cost-free. Therefore, we have J
ðvvÞ ¼ 0; 8vv 2 Vab,
while for the other transient states, the optimal cost-to-go
function J
ðvvÞ is iteratively determined by

JnðvvÞ ¼ max
x2AðvvÞ

n
V�ðvv; xÞ þ

X
vv02V

P½vv0jvv; x�Jn�1ðvv0Þ
o
;8vv 2 Vtr;

(7)

where n denotes the iteration index. Note that when
� 2 ½�1; h�, the value iteration (7) is guaranteed to converge
based on [30]. After convergence, we let Lð�;p


�;vv0Þ ¼
V ðp


�;vv0Þ þ �
�
Lðp


�;vv0Þ � LðuÞ� denote the optimal objective

of ðP1Þ, use V �ðp

�;vv0Þ to denote the optimal objective

ofðP2Þ, and use Lðp

�;vv0Þ to denote the optimal average life-

time for the SSP problem ðP2Þ. It is easy to observe the fol-
lowing equivalence:

V �ðp

�;vv0Þ ¼ J
ðvv0Þ ¼ V ðp


�;vv0Þ þ �Lðp

�;vv0Þ: (8)

By the nature of the Lagrangian approach, we have the
following monotonicity properties for the average value

V ðp

�;vv0Þ and average lifetime Lðp


�;vv0Þ with respect to
� 2 ð�1; h�.

Proposition 1 (Monotonicity Property). Lðp

�;vv0Þ is non-

decreasing in � 2 ð�1; h�, and the value performance

V ðp

�;vv0Þ is non-decreasing in � 2 ð�1; 0� and non-increas-

ing in � 2 ½0; h�.

Proof. For each given � 2 ð�1; h�, we choose a nonnegative
� such that � � �þ � � h holds, then we have the follow-
ing inequalities

0 � V �þ�ðp

�;vv0Þ � V �ðp


�;vv0Þ (9)

� V �þ�ðp

�þ�;vv0Þ � V �ðp


�;vv0Þ (10)

� V �þ�ðp

�þ�;vv0Þ � V �ðp


�þ�;vv0Þ: (11)

The right-hand-side of inequalities (9) and (11) can be
further written as follows:

V �þ�ðp

�;vv0Þ � V �ðp


�;vv0Þ ¼ �Lðp

�;vv0Þ; (12)

V �þ�ðp

�þ�;vv0Þ � V �ðp


�þ�;vv0Þ ¼ �Lðp

�þ�;vv0Þ: (13)

Therefore, for any positive � 2 ½0; h� ��, we have the fol-
lowing inequalities:

0 � �Lðp

�;vv0Þ � V �þ�ðp


�þ�;vv0Þ � V �ðp

�;vv0Þ

� �Lðp

�þ�;vv0Þ: (14)

Thus, we have Lðp

�;vv0Þ � Lðp


�þ�;vv0Þ, i.e, Lðp

�;vv0Þ is

non-decreasing in � 2 ð�1; h�.
Similarly, we can use the above method to prove the

second claim of Proposition 1 at � 2 ð�1; 0� and
� 2 ½0; h�, respectively, and the details (i.e., the proof for
the second claim) are skipped here for brevity. tu

Based on the above proposition, we have the following
remark regarding the physical meaning of Lagrange multi-
plier �.

Remark 1 (Interpretation of �). The Lagrange multiplier �
here serves to adjust the equivalent maintenance cost
factor h� ¼ h� �. Specifically, decreasing � makes the
equivalent maintenance cost factor h� larger, which fur-
ther encourages the corresponding optimal policy p


� to
be more aggressive. As a result, the average lifetime
becomes shorter and vise versa.

Furthermore, based on the well-known Karush-Kuhn-
Tucker conditions for the typical constrained Markov deci-
sion processes [32], the optimal Lagrangian Lð�
;p


�
 ;vv0Þ
has the following saddle point property:
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Lð�
;p

�
 ;vv0Þ

¼ min
�

max
p�

�
V ðp�;vv0Þ þ �

�
Lðp�;vv0Þ � LðuÞ��

¼ max
p�

min
�

�
V ðp�;vv0Þ þ �

�
Lðp�;vv0Þ � LðuÞ�� (16)

¼ min
�

�
V ðp


�;vv0Þ þ �
�
Lðp


�;vv0Þ � LðuÞ��; (17)

where p

�
 2 PSD is optimal to ðP0Þ with �
 � h. Basically

the above property states that there is no duality gap in
using the Lagrangian approach, and any point in the upper
boundary defined by ðP0Þ can be equivalently obtained by
solving its dual problem (17). Based on Proposition 1 and
the saddle point property, we further have the following
corollary, which states the condition for the existence of
optimal stationary and deterministic policies for ðP0Þ.

Corollary 2. There exists a unique optimal policy pðuÞ 2 PSD for

Problem ðP0Þ iff LðuÞ 2
	
L0; Lðp


h;vv0Þ


.

Therefore, an arbitrary point on the upper boundary can
be achieved by a unique stationary and deterministic policy

pðuÞ, iff its average lifetime is no larger than Lðp

h;vv0Þ, and

this policy pðuÞ is optimal to ðP0Þ.

3.2 Structure of the Upper Boundary

Based on Proposition 1 and Corollary 2, we characterize the
following two special ending points for the upper boundary of
the feasible value-lifetime region:

� Pareto optimality cut-off (POC) point. When LðuÞ ¼
Lðp


0;vv0Þ, the optimal policy p

0 for (P1) at � ¼ 0 is

optimal for (P0); i.e., pðuÞ ¼ p

0. Since for any feasible

policy p, V ðp;vv0Þ � V ðp

0;vv0Þ always holds. There-

fore, the value-lifetime performance pair
�
Lðp


0;vv0Þ;
V ðp


0;vv0Þ
�
reaches the global maximum of the value per-

formance, and thus the policy corresponds to the POC
point (i.e., policy p


0) is economically-optimal. We will
next show (in Section 3.3) that this point is also the
cut-off point for whether the upper boundary is Par-
eto optimal or not.

� Deterministic optimality cut-off (DOC) point. Simi-
larly, when LðuÞ ¼ Lðp


h;vv0Þ, where p

h is the opti-

mal policy for (P1) at � ¼ h. Then, the optimal

policy for (P0), i.e., pðuÞ, is exactly p

h. Therefore,

the value-lifetime performance pair
�
Lðp


h;vv0Þ;

V ðp

h;vv0Þ

�
has the maximum average lifetime

within the stationary and deterministic policy set
PSD. Thus, within the policy space PSD, the policy
corresponds to the DOC point (i.e., policy p


h), is
environmentally-optimal. We will next show (in Sec-
tion 3.3) that this point is also the cut-off point for
whether there exists an optimal stationary and
deterministic policy or not.

Therefore, given any LðuÞ 2 ½L0;þ1�, the above two spe-
cial points separate the upper boundary into three parts. As
illustrated in Fig. 2, we use the black dots to denote the POC
point and the DOC point, and the subregions separated
by these two points are distinguished by different patterns.
Specifically, the leftmost subregion is denoted as Subregion-
A, the middle subregion is denoted as Subregion-B, and the
rightmost subregion is denoted as Subregion-C. As a special
case, when the BESS is maintenance-free, i.e., h ¼ 0, the POC
point and the DOC point merge into one point. We illustrate
this case in Fig. 3, where the whole value-lifetime region can
be divided into two subregions, namely, Subregion-A and
Subregion-C.

3.3 Pareto Optimality of the Upper Boundary

Based on the above study of the upper boundary and the
partitioning of the feasible value-lifetime region, we now
proceed to investigate the Pareto optimality of the upper
boundary. Recall that the Pareto boundary is a subset of the
upper boundary; hence, we just need to clarify the condition
under which the upper boundary is exactly the Pareto
boundary. In particular, we have the following important
proposition, which states the Pareto optimality of the upper
boundary within the three subregions.

Proposition 3. In Subregion-A and Subregion-B, Problem (P0)

is feasible, and the optimal policy pðuÞ is strictly Pareto optimal
in Subregion-B but not Pareto optimal in Subregion-A. In
Subregion-C, Problem (P0) is infeasible; i.e., there is no such a
stationary and deterministic policy that achieves the upper
boundary of Subregion-C.

Proof. The proof relies on the results from Proposition 1 and
Corollary 2. Here, we briefly explain the principle of
being Pareto optimal in Subregion-B. Recall that Subre-
gion-B corresponds to the case when its lifetime perfor-
mance falls within the range of ½Lðp


0;vv0Þ; Lðp

h;vv0Þ�.

According to Corollary 2, it is guaranteed that there

exists an optimal stationary and deterministic policy pðuÞ

Fig. 2. Illustration of the feasible value-lifetime region of a BESS with
maintenance costs.

Fig. 3. Illustration of the feasible value-lifetime region of a maintenance-
free BESS.
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for any point in the upper boundary of Subregion-B. Fur-
thermore, according to Proposition 1, when �
 2 ½0; h�,
Lðp


�
 ;vv0Þ can further increase iff V ðp

�
 ;vv0Þ decreases,

and vise versa. Therefore, based on Definition 2, the

value-lifetime performance pair
�
Lðp


�
 ;vv0Þ; V ðp

�
 ;vv0Þ

�
and its corresponding policy pðuÞ are strictly Pareto opti-

mal. In other words, in Subregion-B, we have pðpÞ ¼
pðuÞ ¼ p


�
 with a unique �
 2 ½0; h�. tu

The above Pareto optimality analysis implies that, any
policy that is more aggressive than policy p


0 will lead to a
value-lifetime performance pair in Subregion-A. As a
result, the lifetime performance will be shortened and the
value performance will be deteriorated simultaneously.
Therefore, policies that are more conservative than policy
p

0 should be avoided in practice. However, any policy

that is more conservative than policy p

0 but more aggres-

sive than policy p

h will lead to a value-lifetime perfor-

mance pair in Subregion-B. In particular, Pareto optimality
preserves in Subregion-B, and thus the lifetime perfor-
mance and the value performance will not deteriorate at
the same time.

Algorithm 1. Computation of the Pareto Boundary

1: Input: Initializing J0ðvvÞ ¼ 0 for each vv 2 Vtr, � ¼ 10�5,
�min ¼ 0, �max ¼ h, transition matrix P.

2: while �max��min
2 > � do

3: � ¼ �minþ�max
2 ;

4: for i ¼ 0 to jI j � 1 do
5: if i ¼ 0 then
6: J
ðvvÞ ¼ 0; 8vv 2 Vab.
7: else
8: if i � 1 then
9: for (parallel) k ¼ 0 to jKj � 1 do
10: perform value iteration (19) for Gik.
11: end for
12: end if
13: end if
14: end for
15: optimal policy p


� and V ðp

�;vv0Þ ¼ J
ðvv0Þ;

16: calculate Lðp

�;vv0Þ based on Proposition 4;

calculate gð�Þ ¼ Lðp

�;vv0Þ � LðuÞ;

17: if gð�Þ ¼ 0 then
18: go to Step 27;
19: else
20: if signðgð�ÞÞ ¼ signðgð�minÞÞ then
21: �min ¼ �;
22: else
23: �max ¼ �
24: end if
25: end if
26: end while
27: �
 ¼ � and p


�
 ¼ p

�;

28: Output: �
;p

�
 ; V ðp


�
 ;vv0Þ; Lðp

�
 ;vv0Þ.

We concentrate on the policy space PSD; hence the inves-
tigation of non-stationary and/or randomized policies to
achieve the upper boundary of Subregion-C is out of the
scope of this paper and is left for our future work. In the fol-
lowing section, we focus on Subregion-B and present an
efficient algorithm for computing its Pareto boundary.

4 PROPOSED ALGORITHM FOR COMPUTING

THE PARETO BOUNDARY

In this section, by exploiting the special hidden structure of
the proposed CSSP problem, we propose an efficient paral-
lel algorithm to compute the Pareto boundary. The algo-
rithm is summarized in Algorithm 1 below. In particular,
Algorithm 1 includes three key parts, namely, Part-I for
solving (P1) via a novel parallel value iteration, Part-II for
calculating the lifetime performance based on the underly-
ing absorbing Markov Chain, and Part-III for finding
the optimal Lagrange multiplier via bisection searching.
The details of the three parts are illustrated in the next three
sections, respectively.

4.1 Part-I: Solving ðP1Þ via Parallel Value Iteration

Step 3 to Step 15 are the main part of Algorithm 1 that solves
ðP1Þ through parallel value iteration. This part starts with a

given value of � 2 ½0; h� in Step 3, and p

� and V ðp


�;vv0Þ are
obtained in Step 15 after the convergence of the value
iteration.

The key ideas of our parallel algorithm are i) to partition
the large state space intomultiple layers and groups based on
a specific principle, and then ii) to run the value iteration algo-
rithm within each group in parallel. Specifically, our parallel
value iteration consists of the following two key procedures:

� Layering. Partition the total state space into multiple
layers based on the value of u. In each layer i 2 I , all
the states have the same value of u, where I denotes
the set of all layer-indexes. We denote all the states
within layer i by set Li and further order all the
layers in a monotonic way such that a higher layer
consists of states with larger values of u; i.e.,
Li ¼ fvv ¼ ðu; b; pÞju ¼ ideg; 8i 2 I .

� Grouping. Within each layer i, subdivide Li into mul-
tiple groups fGi;kgk2K based on b, where K denotes
the set of all group-indexes within each layer. There-

fore, we have
[
k2K

Gi;k ¼ Li; 8i 2 I , where Gi;k ¼ fvv ¼

ðu; b; pÞju ¼ ide; b ¼ bþ kdeg; 8k 2 K.
The above layering-and-grouping state partitioning

method yields structural properties for the state space. To
be more specific, layer-0 consists of all the absorbing states
and layer-ðjIj � 1Þ consists of all the initial states (i.e.,
L0 ¼ fvv ¼ ðu; b; pÞju ¼ 0g ¼ Vab and LðjIj�1Þ ¼ fvv ¼ ðu; b; pÞj
u ¼ u0g). Moreover, if we denote the successors6 of state vv

by HðvvÞ, then HðvvÞ ¼ fvvg, 8vv 2 L0, based on the definition
of “absorbing” . Recall that all the absorbing states in the
SSP problems are cost-free. Thus, the optimal cost-to-go
functions for the states in layer-0 can be given as follows:

J
ðvvÞ ¼ 0;vv 2 L0: (18)

Different from the absorbing states in layer-0, 8vv 2 Li

with i 2 Inf0g, its successors HðvvÞ is a subset of
[

i0¼0;			;i�1

Li0

(i.e., HðvvÞ consists of the states from the lower layers only).

6. The successors of state vv mean a set of states which are accessible
from state vv.
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This is because, for any two different layers Li and
Li0 ; i

0; i 2 I and i > i0, transitions only happen from the
state in the upper layer-i to the state in the lower layer-i0.
Based on this observation, a key operation that simplifies
the traditional value iteration algorithm is as follows: for
any group k in layer-i, i.e., 8i 2 I ; 8k 2 K, we can reorga-
nize (7) as

JnðvvÞ ¼ min
x2AðvvÞ

n
Vðvv; xÞ þ

X
vv02Gik

P
�
vv0��vv; x�Jn�1

�
vv0�

þ
X

vv02HðvvÞ
P
�
vv0��vv; x�J
�vv0�o; 8vv 2 Gi;k; (19)

where the third term on the right-hand-side of (19) repre-
sents the optimized cost-to-go functions of the states from
the lower layers.

The layering-and-grouping manipulation and the above
reorganization in (19) have the following two advantages.
First, if the value iteration (19) runs from the bottommost
layer (i.e., layer-0) to the uppermost layer (i.e., layer-
ðjIj � 1Þ), then it can reuse those optimal cost-to-go func-
tions of the states from the previous lower layers and yield
a significant convergence speedup. Second, the states in dif-
ferent groups within the same layer are independent with
each other. Mathematically, this means that if vv0 and vv are
from the same layer Li but from different groups Gi;k0 and

Gi;k, then vv0 =2 HðvvÞ and vv =2 Hðvv0Þ always hold. Therefore,
in each layer, the value iteration (19) can run in parallel. It is
worth pointing out that running the value iteration step in
this particular order (i.e., from layer-0 to layer-ðjIj � 1Þ) and
in parallel among the groups in each layer is a key feature
of the proposed layering-and-grouping method.

Admittedly, our parallel value iteration algorithm based
on layering-and-grouping does not provide a general meth-
odology for solving the problem of “curse of dimensionality”.
Nevertheless, for any similar problem that falls within the
framework of CSSP, the principle of the layering-and-group-
ingmanipulation can be applied to reduce the computational
complexity significantly. To be more specific, the dimension
of the original state space is M ¼ jQjjBjjPj. Assume that the
dimension of the action space is fixed to be jAðvvÞj ¼ A. Then,

the total complexity of solving (7) is in the order of OðM2AÞ.
However, the complexity of solving (19) is reduced to

OðjPj2AÞ. Note that the complexity reduction from OðM2AÞ
toOðjPj2AÞ is significant since the spaces ofQ and B are typi-
cally very large, while the price space of P often has a very
small size. (Note that in practical electricity pricing scenarios,
it is rarely to have very fine-grained pricing granularity.)

4.2 Part-II: Calculating the Lifetime Performance
Based on the Underlying Absorbing Markov
Chain

Step 16 is the second part of Algorithm 1, where the lifetime
performance Lðp


�;vv0Þ is calculated based on the underlying
absorbing Markov chain.

In fact, given an arbitrary initial state vv0, following the
optimal policy p


�, the system states evolve according to a
discrete time finite-state absorbing Markov chain [33]. We
introduce the following definition regarding the canonical
matrix form of the absorbing Markov chain. Suppose that

we have the transition matrix Qðp

�;vv0Þ for the underlying

absorbing Markov chain, which starts from initial state vv0

and follows the policy p

�. If we label the states in such a

way that the transient states come first, and further assume
that there are r absorbing states and m transient states,
then, Qðp


�;vv0Þ can be represented by the following canoni-
cal form:

Qðp

�;vv0Þ ¼

Hðp

�;vv0Þ Rðp


�;vv0Þ
0ðp


�;vv0Þ Iðp

�;vv0Þ

� �
: (20)

Here, Iðp

�;vv0Þ is an r-by-r identity matrix, 0ðp


�;vv0Þ is an
r-by-m zero matrix, Rðp


�;vv0Þ is a nonzero m-by-r matrix,
andHðp


�;vv0Þ is anm-by-mmatrix.
Based on the standard theory of absorbing Markov chain

[33], we have the following proposition that shows the
expression of the lifetime performance Lðp


�;vv0Þ:

Proposition 4. If we defineN ¼
�
I�Hðp


�;vv0Þ
��1

and n ¼N1,
where Hðp


�;vv0Þ denotes the canonical transition matrix of the
underlying absorbing Markov chain, I denotes the identical
matrix, and 1 denotes a vector whose entries are all 1. Then,

Lðp

�;vv0Þ ¼ nð1Þ; i.e., Lðp


�;vv0Þ is equal to the first entry of
vector n.

Both the value performance and the lifetime performance
have now been obtained, provided the Lagrange multiplier
� is given. The final part of Algorithm 1 is to obtain the opti-
mal Lagrange multiplier by performing a low-complexity
bisection search.

4.3 Part-III: Finding the Optimal Lagrange Multiplier
via Bisection Search

The third part of Algorithm 1 corresponds to the outermost
while-loop consisting of Step 3 and Step 17 to Step 25, where
the Lagrange multiplier � is updated via a bisection search.
After convergence, the optimal Lagrange multiplier �
, p


�
 ,
and the Pareto optimal value-lifetime performance pair�
Lðp


�
 ;vv0Þ; V ðp

�
 ;vv0Þ

�
will be obtained. Note that in Step

16, we define gð�Þ ¼ Lðp

�;vv0Þ � LðuÞ, i.e., the difference

between the targeted average lifetime LðuÞ and the current

average lifetime Lðp

�;vv0Þ.

Noticeably, Algorithm 1 consists of two important itera-
tions in different time-scales. Specifically, the parallel value
iteration is updating in a faster time-scale among different
groups, and the bisection search updates the Lagrange
multiplier � in a slower time-scale. In particular, in the
faster time-scale, the parallel value iteration is guaranteed
to converge to the optimal cost-to-go functions for each
given �, since the principle of optimality, i.e., the Bellman
equation of Problem ðP2Þ, is preserved after the layering-
and-grouping manipulation. Meanwhile, in the slower
time-scale, the convergence of the bisection search is also
guaranteed by the monotonicity property in Proposition 1.
Therefore, Algorithm 1 is guaranteed to converge to the
optimal solution.

5 NUMERICAL EVALUATION

In this section we evaluate the value and lifetime perform-
ances of practical batteries with real-world price data from

TAN ETAL.: PARETO OPTIMALOPERATION OF DISTRIBUTED BATTERY ENERGYSTORAGE SYSTEMS FOR ENERGYARBITRAGE UNDER... 2111



two markets,7 namely, the NYISO market [25] and the
Ontario electricity market in Canada [26]. Our goals are to
demonstrate the Pareto boundary of several types of batter-
ies, and thus to provide insight for battery operators in their
infrastructure planning and procurement. We also show
how the Pareto boundary is influenced by the maintenance
cost and the marginal cost factor, and how the value-life-
time performance degrades if the lifetime impact is not
taken into account. Below we start by describing the price
data sets and some implementation details.

5.1 Implementation Details

Based on the state-of-the-art lead-acid battery technology
[7], [12], [27], we choose to simulate the value-lifetime per-
formance for the following four different types of batteries
in Table 1.

The stepsize dp for the quantization of prices are chosen
to be 5 cents, and then based on the price data from the
NYISO market [25] and the Ontario electricity market [26],
we use a training window of one year to estimate the transi-
tion matrix for the price dynamics (which is similar to [18]
and [19]). We further discretize the energy level space B
and the remaining throughput space Q using a stepsize of
0:5 kWh, i.e., de ¼ 0:5. We assume that vc ¼ 0 and vd ¼ 1,
thus we only need to take into account the discharging effi-
ciency hd. Furthermore, we assume that the capacity st
degrades linearly in the remaining throughput ut, and as
usual, r is chosen to be 80 percent in the capacity decaying
function fðut; s0; rÞ.

5.2 Numerical Results and Discussion

Fig. 4 shows the Pareto boundaries of the four batteries in
Table 1. We are particularly interested in the Pareto bound-
ary of Subregion-B of these four batteries in two different
electricity markets. As illustrated in Fig. 4a, in the NYISO
market, The POC point of Battery-IV locates at ð6; 192;
306:4Þ and the DOC point is ð26; 568; 23:42Þ, the arbitrage
value between these two points strictly decreases with the
increase of the average lifetime, which validates the Pareto
optimality of this upper boundary. Moreover, one can
observe that Battery-IV outperforms the other three batter-
ies by providing a larger average arbitrage value, while
the other three batteries have almost the same value

performance. To demonstrate how the economic and life-
time performances are affected by the price dynamics, we
further perform the simulation on the same four batteries
with the price data from the Ontario market in Fig. 4b. As
we can see in Fig. 4b, the economic and lifetime performan-
ces of the same battery, for instance, Battery-IV, are very dif-
ferent from those in the NYISO market. This implies that a
battery that performs well in one market is not necessarily
going to have the same performance in another market.
A Pareto optimal value-lifetime performance pair, i.e., any
point in the Pareto boundary, requires a careful quantitative
analysis based on its physical specifications and market
information.

Fig. 5 shows the impact of the Lagrange multiplier on the
lifetime performance Lðp


�;vv0Þ, the value performance

V ðp

�;vv0Þ, and the Lagrangian function Lð�;p


�;vv0Þ. We ver-
ify Proposition 1 via changing the value of � in the range of
½�0:4; 0:4�, while the maintenance cost factor h is fixed to
0:4. The leftmost subfigure shows that the lifetime perfor-

mance of a given battery Lðp

�;vv0Þ is non-decreasing in �. In

comparison, the middle subfigure shows a different prop-

erty for the value performance. Specifically, V ðp

�;vv0Þ first

increases in � � 0 and then decreases in 0 � � � h. As men-
tioned in Remark 1, the Lagrange multiplier � adjusts the
equivalent maintenance cost factor h� ¼ h� �. Therefore,
decreasing � makes h� become larger, and thus pushes
the arbitrage policy to be more aggressive and the average
lifetime becomes shorter, accordingly.

We further evaluate the impact of several important
parameters on the upper boundary and the Pareto bound-
ary. Knowing that for most energy systems facilitated with
batteries, the most important battery characteristics are the
battery lifetime and the maintenance requirements. There-
fore, it is very important to analyze how the value and life-
time performances are affected by the marginal cost factor a
and maintenance cost factor h. In Fig. 6, we show the upper
boundary of Subregion-A and Subregion-B for Battery-I
with different values of a and h. We increase the value of a
fromMarginal Cost-I to Marginal Cost-III and show the per-
formance comparison in Fig. 6a. As we can see in Fig. 6a, it
is always beneficial to have a smaller marginal cost factor if
we want to have a better value performance. Moreover, the
impact of a on the value performance is the same at differ-
ent lifetime performances. This is consistent with our intui-
tion that a cheaper battery with the same specifications
will always have a better value performance. However the
lifetime performance will not be improved by having a
smaller marginal cost factor or a lower capital cost. (This

TABLE 1
Specifications of Four Batteries

Characteristic Battery-I Battery-II Battery-III Battery-IV

Charge Rating cmax 4.00 kW 5.00 kW 5.00 kW 5.00 kW
Discharge Rating dmax 2.00 kW 2.50 kW 2.50 kW 2.50 kW
Initial Capacity s0 20 kWh 20 kWh 50 kW 50 kW
Initial LET u0 8,000 kWh 8,000 kWh 8,000 kW 10,000 kW
Discharging Efficiency hd 0.80 0.80 0.80 0.80
Marginal Cost Factor a 3.17 cents 4.17 cents 5.17 cents 6.07 cents
Maintenance Cost Factor h 2.11 cents 2.11 cents 2.41 cents 2.98 cents

7. Recall that we focus on the operation of a micro-scale BESS.
Therefore, the prices in [25], [26] are amenable to validate our proposed
model and algorithm. However, for a grid-scale BESS that may affect
the exogenous pricing schemes, the data sets in [25], [26] might not be
applicable.
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can be shown by the fact that the three POC points only dif-
fer from each other by a constant shift in their value
performances.)

We further show the impact of the maintenance cost fac-
tor on the upper boundary. Specifically, in Fig. 6b, we
increase the value of h from Maintenance Cost-I to Mainte-
nance Cost-III. The same battery in a lower maintenance

cost environment has a better value performance, and the
impact of h on the value performance is increasingly strong
with the increase of lifetime performance, which is different
from the case in Fig. 6a. Meanwhile, the POC and DOC
points in Fig. 6b differ from each other both in the value
and lifetime performances. This phenomenon shows that,
under the optimal operational policy, the maintenance cost

Fig. 4. The Pareto boundary of Subregion-B for the four batteries with price data from (a) the NYISO market in California, USA [25] and (b) the
Ontario market, Canada.

Fig. 5. Impact of the Lagrange multiplier � on the lifetime performance Lðp

�;vv0Þ, the value performance V ðp


�;vv0Þ, and the Lagrangian function
Lð�;p


�;vv0Þ.

Fig. 6. Impact of (a) the marginal cost factor a and (b) the maintenance cost factor h on the upper boundary of Subregion-A and Subregion-B for
Battery-I.
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factor affects both the value performance and the lifetime
performance.

It is very interesting and important to show the value
and lifetime performances for the arbitrage models that
do not take into account the battery’s lifetime impact. In
the literature, the infinite horizon long-term average Mar-
kov decision process (MDP) model is often applied to
obtain the corresponding optimal stationary control policy
(to be abbreviated as the MDP model from now on) when
the battery’s lifetime impact is neglected. Mathematically,
instead of maximizing the total expected arbitrage value
over the entire battery lifetime, the MDP model maxi-
mizes the long-term average reward; i.e., p
 ¼ argmax

p

lim sup
T!1

1

T
E
	XT�1

t¼0

Vðvvt; xtÞ


. Note that the state variable vvt is

redefined to be vvt ¼ ðbt; ptÞ, since the LET is not taken into
account, and the action space is also slightly changed
accordingly. The optimal policy p
 for the above MDP prob-
lem can be solved by relative value iteration [30]. Based on
the corresponding optimal policies of this MDP model and
that of our proposed CSSP model, we apply both of them into a
real battery when its lifetime is actually limited based on the Ah-
throughput model; i.e., we substitute the above policy p
 into
Definition 1 and Definition 2 and obtain the value and life-
time performances based on Monte Carlo simulation. The
performance comparison between the Pareto boundary and
the realized value-lifetime performance is shown in Fig. 7.
It is clear that the MDP model overestimates the value
performance of a BESS by assuming an infinite lifetime.
As a result, the associated “optimal” policy turns out to be
extremely sub-optimal when the lifetime is actually limited.
In summary, neglecting the interaction between lifetime and
operational policy may significantly degrade the value per-
formance and shorten the average lifetime of the battery.

6 CONCLUSION

In this paper, we have studied the value and lifetime per-
formances of operating a BESS for arbitrage with stochasti-
cally varying prices. We define the feasible value-lifetime
region as the union of all feasible value-lifetime perfor-
mance pairs, and build a theoretical optimization frame-
work to quantify the upper boundary of the entire feasible

value-lifetime region. The upper boundary consists of all
the optimal value-lifetime performance pairs, where for
each given average lifetime, the value performance of the
BESS is maximized. By exploiting the hidden structure of
the proposed optimization framework, we have proposed
an efficient parallel algorithm, with guaranteed conver-
gence, to compute the upper boundary. Furthermore, we
propose to subdivide the feasible value-lifetime into three
different subregions and prove that the upper boundary is
Pareto optimal in one of the subregions. Based on the pro-
posed parallel algorithm, we validate our proposed model
and algorithm via real battery specifications and electricity
market data, and the results show some promising insights
for both the infrastructure planning and operational man-
agement of BESSs.
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