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Abstract—To accommodate the increasing electric vehicle (EV)
penetration in distribution grid, coordinated EV charging has
been extensively studied in the literature. However, most of the
existing works optimistically consider the EV charging rate as a
continuous variable and implicitly ignore the capacity limitation
in distribution transformers, which both have great impact on
the efficiency and stability of practical grid operation. Towards a
more realistic setting, this paper formulates the EV coordinated
discrete charging problem as two successive binary programs.
The first one is designed to achieve a desired aggregate load
profile (e.g., valley-filling profile) at the distribution grid level
while taking into account the capacity constraints of distribution
transformers. Leveraging the properties of separable convex
function and total unimodularity, the problem is transformed
into an equivalent linear program, which can be solved efficiently
and optimally. The second problem aims to minimize the total
number of on-off switchings of all the EVs’ charging profiles
while preserving the optimality of the former problem. We prove
the second problem is NP-hard and propose a heuristic algorithm
to approximately achieve our target in an iterative manner.
Case studies confirm the validity of our proposed scheduling
methods and indicate our algorithm’s potential for real-time
implementations.

Index Terms—EYV charging, discrete charging level, load valley-
filling, binary quadratic program, total unimodularity.

I. INTRODUCTION

S the environmental pollution and fossil fuel scarcity in-

cur increasing concern all over the world, electrification
of transportation has attracted a wide range of attentions from
government, industry and academy. Electric vehicles (EVs)
emerge as promising components to substitute the conven-
tional vehicles in the future smart grid [1][2]. Correspondingly,
how to accommodate the large-scale EV penetration with
stable and convenient energy support becomes a crucial issue
for both the power grid operators and the government policy
makers.

Currently, the main EV refueling techniques can be cate-
gorized into two approaches. The first approach is the slow
but economic EV charging that happens in places such as
homes, parking lots and street charging spots, where EVs
can be left idle for a relatively long time without emergent
refueling requirement. In contrast, the other refueling method
is provided in some specific EV refueling stations that are
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capable of fulfilling fast driving range extension within a
time duration compatible to refueling a traditional gasoline
vehicle. Though some leading companies (e.g., Tesla) have
proposed super charging and battery swapping techniques
which can shorten the refueling time significantly [3], the wide
deployment of infrastructure with such techniques not only
requires time to be completed but still takes time to reach
adequate market demand. Thus, slow EV charging overnight
in residential areas is still expected to be the first choice of
most individual EV owners in the near future [4][5].

However, large-scale slow charging in residential areas
introduces significant electricity consumption and may bring
harmful large peaks to existing distribution gird [2][4]. Al-
though the increase of total energy demand can be sup-
ported by gradually upgrading infrastructure capacity, unex-
pected large load peaks would require adequate backup of
expensive fast generators, increase power losses of trans-
mission/distribution lines, and frequently overload grid com-
ponents (e.g., transformers and cables) especially in weak
distribution grid [2][4][7]. Therefore, from the grid operator’s
point of view, the EV charging is expected to be coordinated
so that the total energy consumption, including the base load
and EV charging load, can be shaped to achieve a desired
total load profile at the distribution level, which helps maintain
the energy efficiency and grid stability. On the other hand,
participating in charging coordination is also beneficial for EV
owners. Typically, EV owners are flexible with charging time
but expect to lower down their electricity bills as long as their
EVs can be charged to their target SoC levels before certain
deadlines. Thus, the coordination of EV charging offers EV
owners the opportunity to bid in the electricity market as a
whole for achieving lower charging cost.

Motivated by the above reasons, the coordination of EV
charging has been extensively studied in recent years (to be
reviewed in the next section). In particular, most of the existing
works consider the coordination of EV charging based on the
assumption that EVs can adjust their charging power contin-
uously between zero and their maximum charging rates (i.e.,
continuous charging). However, due to the limitations of the
current battery technology (e.g., the lithium-ion battery) and
EV charger technology (e.g., the constant-current constant-
voltage approach [6]), EVs can only draw an approximately
constant power during charging periods (i.e., discrete charg-
ing) [5][6][16]. Although the continuous charging method is
promising to be commercialized in the future, we envision
that the discrete charging method will still be the dominating
one in the near future, and will co-exist with the continuous
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charging method in the long run!. Therefore, it is of practical
importance to investigate the coordination of EV charging
based on the discrete charging method, and this motivates our
work.

In summary, our contributions in this paper are three-folds.
i) We propose an offline EV coordinated discrete charging
model with grid capacity constraints. In particular, the model
is formulated as two successive binary programs that aim
to optimize the total load variations and total number of
on-off switchings in the charging process, respectively. Our
optimal solution not only serves as a benchmark for the
EV discrete charging with grid capacity constraints but also
provides insights to derive efficient algorithms for real-time
implementations; ii) The EV coordinated discrete charging
problem is transformed into an equivalent linear program
(LP) leveraging the underlying properties of its separable
convex objective and totally unimodular constraint coefficient
matrix. Thus, the first binary program can be solved efficiently
and optimally by just solving an LP; iii) The second binary
program is proven to be NP-hard in the strong sense. Hence,
we design a heuristic algorithm to merge charging periods
of each EV to prevent undesirable frequent on-off switching
during the EV charging process.

II. RELATED WORK

We consider the EV coordinated charging problem from an
optimization perspective. Therefore, we first review the related
literature on how to formulate the EV coordinated charging
problem, and then further survey the directions of algorithmic
development for EV coordinated charging.

Typically, there are three dimensions to control the charging
process in EV coordinated charging problems: space (which
EV to charge), time (when to charge) and speed (at what
rate to charge). Most of the existing works [8]-[15] choose
the continuous charging rates as their decision variables,
which can affect the charging time and the charging speed
for each EV. Such problems have been formulated as linear
[8]-[10] or convex quadratic [11]-[15] programs for various
objectives and can be solved by either centralized [8]-[12] or
decentralized [13]-[15] methods leveraging extensive convex
optimization techniques. However, due to the limitation of the
charging circuit, the continuous charging rate is difficult to
be implemented and chargers in current practice can only
support several discrete charging levels as mentioned in the
previous section. There are a rather limited number of papers
discussing the potential problems that may be induced when
the EV charging rate is discrete. The works [16][17] consider
the uninterruptible discrete charging case, and the proposed
optimization problems try to decide the optimal instance to
start charging for each EV. In particular, a decentralized
randomized algorithm is designed in [16], which solves the

IThis is because both the discrete charging method and the continuous
charging method have their own advantages and disadvantages. For example,
the discrete charging method is easier to be implemented because it only
requires a simple on/off controller with communication capability. However,
it is less flexible for providing grid services. In comparison, the continuous
charging method is more flexible but requires more sophisticated and expen-
sive control devices.

problem in an iterative manner and its suboptimal ratio is
theoretically derived and proven. However, such algorithms
suffer from heavy computation and communication overheads.
[17] proposes a scalable greedy algorithm to lower down
the computational complexity. However, the optimality of the
algorithm cannot be guaranteed. In addition to the aforemen-
tioned literature, the space dimension in the decision space is
constantly ignored. For example, the papers [12]-[14], [16][17]
implicitly assume that charging performances are independent
of EV locations. However, it is usually not the case in practice
because specific charging locations can greatly affect the
congestion conditions over the weak distribution transformers.
To avoid exceeding the transformer capacities, [9] iteratively
maximizes the network flow and finds a feasible solution in
a centralized manner, but it is computationally expensive and
lacks optimality guarantee. [10][11] explore the impacts of EV
charging on the distribution transformers in more details and
schedule the EV charging process centrally taking the capacity
constraints into consideration. To reduce the computational
complexity, [15] uses the ADMM technique to include the
network capacity constraints in its decentralized algorithm, but
the proposed method induces more communication overheads
to achieve an optimal solution.

The recent follow-up papers [18]-[21] on the EV coor-
dinated charging problem mainly focus on two important
directions: how to make the control algorithms scalable for
the increasing population of EVs, and how to design real-
time/online algorithms to mitigate the impacts of uncertainties
from the EVs (e.g., plug-in time, energy demand) in practical
implementations. Most of the existing works [13]-[15], [18]-
[20] achieve scalability by designing decentralized algorithms
based on their corresponding centralized algorithms. While
other works try to design new control architectures to derive
scalable algorithms. For example, [21] decomposes the cen-
tralized problem into three steps, and optimization is only per-
formed in one of the steps to obtain the optimal aggregate load
profile. Subsequently, the optimal aggregate load is distributed
efficiently in a market-based mechanism among all the EVs. In
order to design online algorithms for coordinated EV charging,
the main problem is how to model and integrate uncertain EV
load into the real-time decision process. To address this issue,
[22] proposes to scale up the total EV load by a properly
chosen factor when doing the scheduling to compensate for
the underestimation of the future EV load. Instead of simply
scaling up, other works estimate the future load by simulation
[20] or analyzing historical data [19][21]. Specially, it can be
proven that the suboptimality of the algorithm in [20] vanishes
as the time horizon increases.

In the literature, it is a common way to design online or
decentralized algorithms based on their corresponding offline
centralized formulations. Convexity of the centralized problem
plays an important role in guaranteeing the low computa-
tional complexity for the online algorithms and optimality for
the decentralized algorithms. However, when considering the
physical constraints (e.g., the power flow constraints [19], the
discrete charging rate [16]) in the EV coordinated charging
problem, the centralized problem becomes non-convex and
the corresponding online decentralized algorithms with perfor-
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Fig. 1. Illustration of distribution grid in North America.

mance guarantee will be difficult to achieve. To cope with the
non-convexity, convex relaxation [19] and randomization [16]
are introduced to derive distributed algorithms. Our problem
in the rest of the paper is an offline centralized non-convex
problem, and our major focus is to show how to transform this
non-convex problem into an equivalent LP, which is the sim-
plest convex function. Thus, online decentralized algorithms
can be designed by leveraging the convexity of the equivalent
LP.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the scenario that a trustworthy EV coordinator
takes over the charging operation of all the EVs in the
downstream of a distribution substation. The control horizon
is divided into slots of equal duration At (e.g., 15 minutes).
Let 7 = {1,2,...,T} denote the set of time slot indexes. Fig.
1 illustrates a typical distribution network in North America
[23], in which high-voltage electricity from transmission grid
will be stepped down twice by the respective substation
transformer and distribution transformers before it eventually
reaches houses or public electrical facilities (e.g., public park-
ing lots) in the residential area. Let A" = {1,2,..., N} and
M = {1,2,..., M} denote the set of EVs and load buses
(i.e., distribution transformers). According to the topology of
the distribution grid, A is divided into M disjoint subsets
N1, Ns, ..., Ny, where n € N, if EV n is connected to
load bus m.

A. Assumptions

1) Offline information: We assume that the EV coordinator
is able to obtain the following information at the beginning of
the decision horizon.

o Topology of the distribution grid: N, and M.

« Estimation of the base load on bus m at time ¢: D, (t).

o BV charging specifications: plug-in time t¢,, plug-off time
td, energy demand e,,. The energy demand e, represents
the number of time slots to charge EV n to its desired SoC

level.

Acting as a cooperator of the grid operator, the EV coordinator
can typically have access to the grid-side information (e.g.,
topology and base load estimation) in order to maintain the
grid stability during the EV charging process. In addition, for

private EVs that are considered in this paper, their charging
specifications can be predicted from the history charging
profiles with a reasonable accuracy according to the charac-
teristics of specific drivers’ driving habits and lifestyles. For
example, on a working day, an EV owner stops charging and
leaves for work at 8 a.m. and plug in their EVs after coming
back home at 6 p.m. with the energy consumed by commuting
on that day as his/her energy demand.

2) Single charging rate: Due to the trend to standardize
the charging equipment and limitation of charging technology
[5]1[6][16], EVs are first assumed to be charged at a constant
charging rate ry. The extension for the problem of multiple
charging rates will be discussed in Section IV.

B. Problem Formulation

An EV is said to be connected to the grid during the periods
between its plug-in and plug-off times. Let [,, + be an indicator
function which equals 1 if EV n is connected at time ¢ and 0
otherwise. For the single charging rate case, the basic problem
of EV coordinated charging is to decide whether to charge or
not for each EV during the periods it is connected. Specially,
the decision variables are denoted by the scheduling matrix U,
where each entry of U is denoted as follows:

1 if I, =1 and EV n is charging at time ¢,
.t 0 otherwise.
Note that EVs can only be charged when they are connected.

The objective of the EV coordinator is to reshape the total
load of the whole distribution grid to track some predetermined
load profile L(t), Vt € T (e.g., [13][16]). Typically, L(t)
is designed to either maximize the economic benefit in the
electricity market or minimize the operating cost under the
requirement of grid stability so that a triple-win result for the
EV coordinator, the grid operator and the EV owners can be
realized. Following the literature [13], the objective function
can be formulated as

T N
F(U) =" fi(ro Y wne + D) - L))
t=1 n=1

where D(t) = Z%Zl D,,(t) denotes the total base load of

the distribution grid. f;(-) is a time-dependent convex function

measuring the cost of deviating from target load profile L(t)

and f;(0) = min, fi(z) = 0. We illustrate two classes of

target load profiles L(¢) and their corresponding functions
ft(+) as follows.

o The EV coordinator acts as the utility company and par-
ticipates in the electricity market to minimize its electricity
cost by controlling EVs’ energy consumption profile. For
example, the electricity market in [26] is divided into two
stages, where the EV coordinator first determines L(t) as
the total energy consumption of the distribution grid in the
day-ahead market and buys deficient (or sells superfluous)
electricity in the balance market at additional cost. In Fig.
2, both piecewise-linear and deadzone-linear functions can
model the penalty of electricity imbalance in the balance
market. Deadzone exists if the EV coordinator owns some
energy storage devices to compensate its load fluctuation.
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Fig. 2. Tllustration of penalty functions. x is the difference between the

resulting total load profile and target load profile.

o The EV coordinator is regulated by the grid operator and
tries to minimize the variations of the total load profile.
In this case, the load profile L(t) is designed to be the
average load over the whole time horizon (i.e., L(t) =
L (ro SN s+ D(t))) and the resulting total load
profile is well-known to possess the valley-filling property
[13][16]. Quadratic and log-barrier functions in Fig. 2 can
be used to measure the cost of deviation from the average
load profile. Quadratic functions are a typical mean square
measurement and log-barrier functions penalize small fluctu-
ations moderately but restrains the deviations strictly within
a certain range.

From the EV owners’ point of view, one fundamental
requirement for the EV coordinated charging is to fulfill each
EV’s energy demand before it plugs off. Mathematically, this
constraint can be captured by

4
Z Upt =€n, VneN. (1)
t=t},

Equation (1) guarantee that each EV is allocated enough time

slots to charge to its desired SoC level during its connected

time periods.

From the grid operator’s perspective, stability is the key
issue to be considered. In the distribution grid, distribution
transformers are usually regarded as the most vulnerable
components. In particular, a distribution transformer in North
America typically serves approximately 10 houses and only
has a limited power capacity of 25 kVA [23]. Such transform-
ers will be easily overloaded when multiple EVs are connected
to the same transformer and charged at the same time. Hence,
in order to avoid overloading the distribution transformers, the
following capacity constraints have to be respected

70 Y tUngt+ Dp(t) < Cry VmeMVEET,
nEN,
where C,, denotes the capacity of the distribution transformer
m. After simple manipulations, the above constraints can be
transformed to

3" Ut <cme, YmeMVEET, 2)
neN,

where ¢, ¢ = L%ﬁ“” and |x] is the largest integer not

larger than x. Note that constraint (2) correlates the charging

A [ charging profile of EV 1
Charging profile of EV 2

77/ R/

777,

Aggregate
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1 t 2
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Fig. 3. Illustration of optimal charging profiles with different interruptions.
The top and bottom figures depict two optimal charging profiles with the same
aggregate load. However, it is clear that the bottom charging profile has less
interruptions which is more desired in practice.

process served by the same distribution transformer, which
imposes extra difficulties on solving the scheduling problem.

In summary, the optimal EV coordinated discrete charging
(OCDC) problem can be formulated as follows,

OCDC: ml}n F(U),
s.t. (1),(2), 3)
unt € {0,1}, VneN,VteT.

Let * denote the optimal solution set of problem OCDC.
Note that the objective function of the OCDC problem is only
related to the aggregate load® of all the EVs during each time
slot. Therefore, normally problem OCDC has multiple optimal
solutions that produce the same aggregate load. Such problem
structure helps define /* in a more straightforward manner
which will be shown in Section IV.

Besides, another problem for the EV coordinator is whether
all the optimal solutions of problem OCDC are suitable to be
implemented in practice, and if not, how to choose a better
one in U*. In fact, both EV owners and the grid operator
prefer to have relatively smooth charging profiles. In other
words, the EVs prefer as few on-off switchings as possible
during their charging process. The arguments for the smooth
charging profiles mainly come from two aspects as follows. 1)
Frequent interruptions in the charging process may introduce
extra deterioration for batteries [16][24]; ii) Switching-on
actions will create power spikes on the load buses, which
may threaten the stability of distribution transformers [25].
The feasibility of smoothing the charging profile is illustrated
in Fig. 3. Intuitively, the smooth OCDC (SOCDC) problem
can be formulated as

1 T
. : _ 2

SOCDC:  min  G(U) = 5 ;;wm Unps1)?, @

st. Uel”,

where u, o = unr41 = 0,Yn € N. The objective func-
tion G(U) represents the total number of on-off switch-
ings/interruptions of all the EVs.

Remark 1. In this paper, we focus more on the optimality of
problem OCDC because an interrupted charging process may

2The aggregate load refers to the total load (i.e., the summation of base
load and EV charging load) of the distribution network at one specific time
slot.
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Fig. 4. Illustration of execution time for problem OCDC. Time slot duration
is set to be 15 minutes and capacity constraints are neglected. Each simulation
is repeated 10 times and the average execution time is shown.

not incur any extra cost with the advance of battery/charger
technology in the future. Thus, we formulate problem OCDC
and SOCDC individually instead of combining them into a
single multi-objective optimization problem. If in the future
the battery and the grid can tolerate frequent charging in-
terruptions, then problem SOCDC is not needed so we can
just solve problem OCDC to obtain the optimal coordinated
charging solution. It is worth pointing out that the optimal
load profile always refers to the optimal solution of problem
OCDC.

IV. SOLUTION METHODOLOGY

In this section, we will show the solution methodology
of the EV coordinated discrete charging problems. Problem
OCDC and SOCDC are both binary quadratic programs,
which are generally computationally intractable for large-
scale (e.g., more than 100 EVs) input instances due to their
combinatorial nature. Fig. 4 compares the execution time?
using our proposed OCDC algorithm (to be addressed in detail
in Subsection IV-A) and the execution time of commercial
solvers (i.e., Cplex and Gurobi) for a simplified version of
problem OCDC. It is shown that the OCDC problem becomes
intractable quickly with the increase of EV number. Thus, it
is important to design efficient algorithms for our proposed
problem leveraging its special structure. In the following part,
we first introduce how to transform problem OCDC into an
equivalent LP. Then, based on the optimal solution of the
OCDC problem, we show a complete formulation of problem
SOCDC and prove that problem SOCDC is NP-hard in the
strong sense. Finally, we propose a heuristic algorithm to
search for an optimal charging profile with less interruptions.

A. Optimal Coordinated Discrete Charging

A function is defined as separable convex if it can be
represented by a sum of single-variable convex functions. Sep-
arability is a desired property for tractable integer programs
[28]. To this end, recall that the objective of problem OCDC

3The simulations are implemented on a virtual machine (VM) in our private
cloud. The VM gets 20 CPU cores from Intel Xeon ES-2470 v2 processor
(2.40 GHz) and 24 GB of memory. Because the execution time of the OCDC
problem has no theoretical bound, the calculation is forced to stop when the
execution time exceeds 1000 seconds.

only depends on the aggregate load of each time period. We
introduce ancillary variable v; to denote the total number of
EVs in charging mode during time slot ¢. Then, we have
equality constraints as follows.

N
D tni=vi, VEET. (5)
n=1

Let D; denote the feasible set of v;, namely, D; = [0,7:] N Z,
where the upper bound T, = Zi\,{:l min{c, ¢, ZnENm It
depends on the availability of the EVs, the power grid topology
and the distribution transformer capacities.

By (5), problem OCDC can be reformulated as

T
IIIJH‘I,I ; fe(rove + D(t) — L(t)),

(6)
st (1),(2),(5),
unt € {0,1}, YneN,VteT,
where v = [v1,v2,...,0¢,...,07), t € T. A’ represents

the transpose of matrix A. Herein, the objective function is
the summation of single-variable convex functions f;(rqv; +
D(t) — L(t)) and hence separable convex.

Furthermore, total unimodularity is also an important prop-
erty to eliminate integer constraints without losing optimality.
Constraint coefficient matrix with totally unimodular property
defines the solution space as a polyhedron, whose vertices are
all integral. Thus, total unimodularity helps safely eliminate
integer requirement constraints if the optimal solutions are
known to be located on the extreme points of the polyhedron
(e.g., linear objective).

Theorem 1. The coefficient matrix of constraints (1), (2) and
(5) is totally unimodular.

Proof. Please refer to Appendix A. O

Until now, we have shown that problem (6) has a separable
convex objective function and totally unimodular constraint
coefficient matrix. In general, the convex integer objective
function is difficult to tackle. However, leveraging the -
representation technique [29], a single-variable integer convex
function can be replaced by an equivalent LP, which is much
easier to handle. Specifically, define a single-variable function
hi(ve) = fe(rove + D(t) — L(t)),vy € Dy, which can be
represented as,

he(vy) = rilm > hi(i) A, (7a)
" jED:
S.t Z j)\t,] =, v €Dy (7b)
JED:
S Mi=1 A;>0 (7c)
JE€D:

The A-representation approximates the continuous function
ht(-) with a piecewise-linear function defined by points
(vt, he(ve)), vy € Dy. Due to the convexity of hy(-), such
approximation will be an upper bound of h;(-) within interval
[0,7;] and equals h(-) at the integer points in D;. Given the
integrality constraints of problem (6), only the function values
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at integral points will be counted. Thus, this A-representation
is exactly equivalent to our original single-variable convex
function h.(-) when the decision variable is restricted to be
integer. Substituting (7) into (6) and combining the two-level
minimization together, problem OCDC can be transformed
into an integer linear program

mln Zth )AL

7

t=1j€D; (8)
s.t. (1),(2),(5), (7b), (Tc),
unt €{0,1}, VYneN,VteT,
where new variables A = [A1,A2,...,As ..., A7) and

A= [Auo, Aty Ay A, ) J € Dy are introduced.
By utilizing the A-representation and the properties of totally
unimodular constraint coefficient matrix, it is proven in [29]
that after relaxing the integrality constraints, the optimal
solutions of (8) are guaranteed to be integral and are the
same as the optimal solutions of problem OCDC. Thus, the
OCDC problem can be solved efficiently and optimally via
algorithms designed to solve LP (e.g., the simplex or interior-
points algorithm).

Remark 2. We have so far discussed the single charging rate
case. The more general case of multiple charging rates can
be a natural extension of our proposed OCDC problem, and
the same technique presented above can be applied to solve
the extended OCDC problem if the multiple charging rates
are integer multiples of the lowest charging rate ry. However,
for the case that multiple discrete charging rates are arbitrarily
selected, the problem becomes far more complicated and thus
is left for our future work. Furthermore, our proposed methods
to solve the EV charging problem can be naturally extended to
coordinate the charging scheduling of residential-level battery
energy storage.

B. Smoothing the EV Charging Profiles

Let (U*, v*, A") denote an optimal solution of problem (8).
As mentioned before, the optimality of problem OCDC is
characterized uniquely by v*, which represents the optimal
aggregate number of EVs during each time period. Given
v*, U* can be defined by a set of linear equations. Thus,
problem SOCDC is described by a binary quadratic program
as follows.

N )]
Zun,t:vz‘, Vte T

n=1

unt € {0,1}, YneN,VteT.

Note that the coefficient matrix of problem (9) is a submatrix
of problem OCDC'’s coefficient matrix and hence is totally
unimodular. However, the objective function of problem (9)
is not separable, which makes it inappropriate to solve in the
same way as we did in the last subsection. In fact, problem
(9) is proven to be NP-hard in the strong sense.

TABLE I
ILLUSTRATING THE VALIDITY OF THE LINEARIZED OBJECTIVE

t I 2 3 4 5 6 71 8 9
41 0 1 1 1 0 0 10
o) 6 11 -6 17 7 -1 -0 6 -l

«oFF9 0 1 1 1 1 0 10 0

oD 0 a6 17 17 7 -1l 6 -1 0
G111 1 0 10 0
BF 06 17 17 7 -1l 6 - 0
R 1 1 1 00 0

Theorem 2. Problem (9) is NP-hard in the strong sense.
There can be no polynomial time approximation algorithms
for problem (9) unless P=NP.

Proof. Please refer to Appendix B. O

SOCDC Algorithm
Input: Distribution grid topology N,,, base load D,,, and
capacity C,, for each bus m € M. EV specification
(ti,t4 E,) for each EV n € N.
Output: Charging profile U°.
Solve problem (8) and obtain optimal solution (U*, v*).
Set k = 0, k(M%) = 100. Initialize the charging profile by
having U? = U = U*.
repeat
U*+Y = arg mingey- GHU, UR).
U = arg Milye fys uk+01 G(U).
k=k+1
until convergence or k = k(™).

Thus, we turn to finding a simple heuristic algorithm which
can achieve reasonably good results within a proper time.
Note that the objective of problem (9) is only related to the
total number of on-off switchings regardless of their specific
locations (i.e., which EV and at which time). Thus, randomly
allocating the limited charging capacity to competing EVs with
the same EV specification will not affect the performance of
problem (9). The basic idea of our algorithm is to iteratively
linearize the quadratic objective function and efficiently search
for a relatively smoother charging profile. Specifically, we
replace the objective function of problem (9) with a linear
function parameterized by the solutions from previous itera-
tions,

N T
(o, oWy =3 Za(kzun t

n=1t=1

where a( 2 = 'yluglkz 1 +’ygu(k) +fygufl 2“. Weighting factors

Y1, Y2 and v3 are chosen to satisfy 73 < 71 + 72 (e.g.,
v = —1,7% = —6,73 = —10). Such weighting factors are
valid because for any group of 1 with arbitrary length in
vector u,, in each iteration, the weighting factor of the last
1 in each group is always larger than the weighting factor of
the O just before this group, which indicates that this 1-0 pair
will be inclined to exchange their location in the next iteration
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as long as the corresponding constraint is not violated. Thus,
during each iteration, all the charging periods try to move one
time slot ahead, which will eventually combine the charging
periods together after the capacity constraints stop them from
moving forward. Table I illustrates several iterations of the
charging profile of EV n and its corresponding weighting
factors, which validate the argument above. Moreover, such
linearized objective is separable. Thus, the computation load
for each iteration is equivalent to solving an LP.

We summarize our solution methodology for problems
OCDC and SOCDC in Algorithm SOCDC. Note that our
algorithm can achieve a rather smooth charging profile by
solving successive LPs within a certain number of iterations,
which is relatively efficient even when the input size is large.

V. CASE STUDIES AND DISCUSSIONS

In this section, we evaluate the effectiveness of our proposed
algorithm from multiple perspectives. For ease of illustration,
we choose the flat load profile as our target load profile (i.e.,
L(t) = 0,VYt € T) and quadratic function to penalize any
deviation, which can result in a valley-filling profile. Our case
studies consider a distribution grid with 100 residential buses
and one commercial bus. Each residential bus has a capacity
of 25 kVA and supports ten houses’ electricity consumption
while the commercial bus with 500 MVA capacity works for
one public parking lot which can accommodate at most 400
EVs. To model EVs’ uneven distribution over the residential
buses, 10% and 90% of 800 EVs are randomly distributed
in 20% and 60% of the residential buses respectively. The
remaining 20% of the buses have no EVs that are charged at
home. The hourly base load profile on each residential bus
is randomly selected from the daily power consumption of a
single home from July Ist to July 20th in the service area
of the Southern California Edison [30] and is scaled by the
number of houses attached to the bus (in our case, there are
10 houses attached to each bus). For the commercial bus, we
assume there is no base load as it supports EV charging only.
Based on [2], all the EVs are charged with single-phase level-2
charging rate of 3.3 kW.

A. Performance of SOCDC Algorithm

We first verify the valley-filling property of our proposed
SOCDC algorithm. Without loss of generality, we assume
that our scheduling horizon is from 18:00 to 08:00 on the
next day, and during this period all the EVs are connected
and require 6 hours to be fully charged. Fig. 5 shows the
optimal aggregate load obtained from the SOCDC algorithm
for different EV penetration levels. It can be shown that the
aggregate load typically reveals a valley-filling property except
when the EV penetration is too low (5%) or too high (100%).
The reasons are as follows. In the low penetration case, there
are not enough EVs to fill the load valley exactly even though
all the EVs charge during the valley period. As for the high
penetration case, due to the uneven EV distribution over buses,
capacities of some buses are saturated while some other buses
still possess additional capacities which cannot be further
utilized. Therefore, the total load during valley periods is lower
than the load during peak periods.
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Fig. 5. Optimal aggregate load profiles for various EV penetrations. In the
case of 100% EV penetration, there are totally 1200 EVs in the distribution
grid in which 800 EVs charge at homes and 400 EVs charge at parking lots.

Though the SOCDC algorithm can smooth the total load
profile effectively within the scheduling horizon, the distribu-
tion grid may encounter a deep load ramp at the end of the
scheduling horizon (i.e., after 8 a.m.). In order to prevent this
potential risk, we can reshape the total load profile by the
modified objective function as follows

T

FU =Y wifilro Y s+ DE) — (1)),

where w; is the weighting factor at time ¢. Then, the following
two modifications can be applied to prevent the risk of deep
ramp: i) we choose a targeted load profile L(t) with a moderate
decreasing rate near the end of the time horizon. Then, by
tracking L(t), the final total load profile will not experience
such a deep ramp. ii) If we keep L(¢) = 0, we can modify the
penalty functions f;(-) or the weighting factors w; for different
t so that the penalty near the end of the time horizon is rather
large. Hence, the modified objective function can force the
EVs not to charge during the periods near the end of the time
horizon. Fig. 6 illustrates the effectiveness of our methods to
prevent the deep ramp risk. Here, we modify the objective
function by changing the weighing factor w;. In particular,
we set wy = 1 before 4 a.m. and w, increase linearly with
t after 4 a.m.. By adjusting the weighting factor w;, we can
achieve the load curves with different ramp rates at the end
of the scheduling horizon.

To evaluate the advantages of the SOCDC algorithm, we
compare the following charging schemes:

« SOCDC: Apply the SOCDC algorithm.

¢ SOCDC-N: Perform the SOCDC algorithm without capac-
ity constraints (2).

o Greedy: Choose the EVs with larger energy demand to be
charged first while avoid violating the capacity constraints.

o Greedy-N: Perform Greedy without capacity constraints.

Fig. 7 shows the total load profiles of different charg-

ing schemes. Compared with Greedy and Greedy-N, both
SOCDC and SOCDC-N can achieve flatter total load profiles
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Fig. 6. Illustration of the effectiveness of our methods to prevent the deep
ramp risk for different EV penetrations.

over the entire time horizon from 18:00 to 8:00. Moreover,
SOCDC-N obtains a flatter profile in terms of the valley-filling
behavior because the scheduling of SOCDC is restricted by
the capacity constraints and thus less flexible in controlling the
charging process. Fig. 8 depicts the distribution of the loads
on all the residential buses over the entire time horizon. Each
load sample represents the total load of one bus during one
time slot and is normalized by the capacity of that bus. It is
shown that when SOCDC-N and Greedy-N are applied, buses
are possible to be overloaded, which threatens the stability
of the distribution grid. In contrast, by applying SOCDC,
the normalized load on each bus is less than or equal to 1.
Therefore, SOCDC can strictly confine its load below the

T T
—&— Base Load
= = =SOCDC
450 SOCDC-N]
2 = =1 Greedy
4+ - v Greedy-N H

Total load of distribution grid (MW)

0

L L
24:00 02:00
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18:00 20:00 22:00 04:00 06:00

Fig. 7. Aggregate total load profiles for four scheduling schemes.

predetermined capacity of each individual bus all the time.
Furthermore, compared with Greedy, SOCDC can reduce the
number of heavily loaded buses.

Next, we show the performance of our proposed heuristic
algorithm in minimizing the total number of on-off switchings.
To test the robustness of our algorithm, we generate multiple
scenarios for different EV penetrations. For each scenario,
EV plug-in time varies uniformly from 18:00 to 20:00. Fig.
9 shows the number of on-off switchings of all the EVs
before and after the smoothing procedure. In particular, the
maximum, average and minimum of 100 simulations are
illustrated for each EV penetration. Note that the benchmark
we use is the total number of EVs participating in the charging
scheduling, which is the loosest lower bound of problem
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Fig. 9. Comparing the number of on-off switching before and after the
smoothing procedure.

SOCDC. Thus, the real gap between our result and the optimal
value is smaller than that shown in Fig. 9.

B. Illustration of Potential Real-time Implementations

Until now, we assume that we can predict the EV specifica-
tions exactly when applying the SOCDC algorithm. Towards a
more realistic setting, we discuss the SOCDC algorithm’s po-
tential for real-time implementations, in which the prediction
is unavailable or only available for a short time period.

Typically, the EV coordinator can obtain an EV’s specifi-
cation once the EV gets connected. In the worst case that the
EV coordinator has no information about when EVs will get
connected in the future, an intuitive way to schedule the EV
charging process is to perform the SOCDC algorithm over
all the connected EVs once a new EV gets connected. We
name this incremental implementation by ROCDC. Figs. 10
(a) and (b) show the results of the offline SOCDC algorithm
and the online ROCDC method under different plug-in time
uncertainties and EV penetrations. We can observe that larger
uncertainty of EV arrival or larger EV penetration results
in larger deviation from the optimal solution when applying
ROCDC. For the case with low EV penetration and small
fluctuation in EV plug-in time, ROCDC can achieve results
pretty close to the optimal solution as shown by the red curves
in Fig. 10 (a).

ROCDC only considers the connected EVs. If the EV
coordinator can predict the EV specifications precisely in the
near future, the scheduling can be implemented in a way
similar to the model predictive control. It works as follows:
at time t, the EV coordinator estimates the information of EV
arrivals within the time interval [t,¢ + Tp| in addition to the
known information of the connected EVs at time ¢, where
Tp is the prediction time window. The SOCDC algorithm is
performed for both connected EVs and estimated arriving EVs
but only the scheduling solution at time ¢ is applied. At time
t + 1, the previous procedure is repeated. We call this method
POCDC. Fig. 10 (c) shows the performance of POCDC. The
aggregate load is close to the optimal offline load profile with
increase of the prediction window 7p. Thus, when the EV
coordinator has the ability to predict EV information, POCDC

can achieve a relatively satisfactory results for EV coordinated
charging. Furthermore, we observe that the sub-optimality of
the POCDC is mainly due to the underestimation of the EV
load in the future. Thus, to improve the performance of the
online algorithms, it is important to charge the connected EVs
(i.e., the EVs that have already plugged in the power grid)
more aggressively in case the unexpected EV load in the future
will congest the power grid and lead to large load peaks.

VI. CONCLUSION

In this paper, we considered the EV coordinated discrete
charging problem by taking into account the grid capacity
constraints in distribution grid. The discrete optimization
problem was formulated as two successive problems OCDC
and SOCDC. Leveraging the properties of separable convex
functions and total unimodularity, the problem OCDC was
transformed into an equivalent LP, which could be solved
efficiently and optimally. We further proved that the prob-
lem SOCDC is NP-hard and proposed a heuristic algorithm
to minimize the on-off switchings for each EV’s charging
profile. Based on the simulation results, we demonstrated
our algorithm’s performance for various EV penetrations and
observed the importance of grid capacity constraints compared
with other scheduling methods. By applying our algorithm
in incremental and prediction-based manners, we showed
that our method could achieve reasonably good results under
weak uncertainty or in the low EV penetration cases even
without good predictions. Furthermore, connected EVs should
be charged more aggressively to improve the performance of
online algorithms in the cases with high EV arrival uncertainty
or high EV penetration.

APPENDIX A
PROOF OF THEOREM 1

Lemma 1. An I x J matrix A is totally unimodular if and
only if i) A has all its entries selected in {—1,0,+1} and ii)
every row subset T can be divided into two disjoint sets, 1,
and I, such that |2:Z-€I1 ai; — Eieh ai;| <1,V1<j<l/J,
where a;; denotes the (i,j) element of matrix A [27].

First of all, it is clear that all the entries of the coefficient
matrix are either 0, 1 or —1. Thus, the first condition of Lemma
1 is satisfied. Note that the columns corresponding to variable
v, always satisfy the second condition of Lemma 1 no matter
how the row subset is divided since for each column involved
v¢, only one element equals to —1 and the rest are 0. Thus, it is
sufficient to prove that for any row subset Z of the coefficient
matrix, it can be divided into two disjoint subsets, 77 and Z,
and | Yo7, aij—Y ez, @ijl < 1,V € JY, where J" denotes
the column subset associated with variables w,, ;.

Given Z, the way to construct Z; and Z, to satisfy Lemma
1 can be as follows. Let Z(V), Z(2) and Z(®) represent the
subsets of Z corresponding to constraints (1), (2) and (5),
respectively.

Step 1. Group Z®) into 7.

Step 2. If there exist rows in Z(?) that are associated with the
same t as the rows in Z(%), group these rows into Z, and then
group the rest of the rows of Z(?) into 7.
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Step 3. Group Z) into Zo.

Each row in Z(®) has elements equal to 1 for the corre-
sponding variable u, ; with a fixed ¢ and n € N. After
step 1, the summation of the rows in Z; is a row vector
with all its entries being either 0 or 1. For the rows in 73,
they only have elements equal to 1 for the corresponding
variable w,, with a fixed ¢ and n € N,,. According to
our grouping strategy in step 2, it can be guaranteed that
(Xiez, @ij = D ier, @ij) € {0,1}, V5 € J". Since the sum of
rows in Z(!) also contains either 0 or 1, after performing step
3, it is guaranteed that (}_,c7 aij =D ez, ij) € {—1,0,1},
Vj € J". Thus, the coefficient matrix is proved to be totally
unimodular.

APPENDIX B
PROOF OF THEOREM 2

Problem (9) can be represented in matrix form as
ming{2u'Mu : Au < b,u € {0,1}"T}, where A is
totally unimodular and b is an integer vector. M = Q'Q
is semidefinite, where Q is an N-block-diagonal matrix with
each of its diagonal blocks a T' x T matrix of the form

1 -1 0 0
0 1 -1 0
: . . 0
0 0o 1 -1
0 0 O 1

Therefore, Q is totally unimodular and non-singular. Based
on Theorem 4.1 in [31], problem (9) is NP-hard in the strong
sense.
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